способ ранней лесопатологической диагностики
Классы МПК: | A01G23/00 Лесное хозяйство G01V8/00 Разведка или обнаружение оптическими средствами G03B42/08 визуализация записей с использованием оптических средств G06F19/00 Устройства или способы цифровых вычислений или обработки данных для специальных применений |
Автор(ы): | Давыдов В.Ф., Илларионов Г.П., Мозолевская Е.Г., Шалаев В.С., Гольцева Л.В. |
Патентообладатель(и): | Московский государственный университет леса |
Приоритеты: |
подача заявки:
2000-12-14 публикация патента:
27.09.2002 |
Изобретение предназначено для использования в области лесного хозяйства. Способ включает получение оцифрованных значений функций яркости I(х, у) изображений в виде матриц дискретных отсчетов размерностью |m
n| элементов в зонах R и G. При этом определяют отношение спектральных коэффициентов яркости зон, вычисляют попиксельные отношения матриц зон R и G, составляют результирующую матрицу из этих отношений. Методами пространственного дифференцирования выделяют контуры на результирующем изображении, рассчитывают функции фрактальной размерности изображения внутри контуров и по численному значению фрактальной размерности, положению контуров и их площади судят о причинах, координатах и размерах выявленной патологии. Изобретение позволяет повысить точность и достоверность диагностических оценок. 5 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5

Формула изобретения
Способ ранней лесопатологической диагностики, при котором получают оцифрованные значения функций яркости I(х, y) изображений в виде матриц дискретных отсчетов размерностью | m х n| элементов в зонах R и G, определяют отношение спектральных коэффициентов яркости зон, отличающийся тем, что вычисляют попиксельные отношения матриц зон R и G, составляют результирующую матрицу из этих отношений, выделяют методами пространственного дифференцирования контуры на результирующем изображении, рассчитывают функции фрактальной размерности изображения внутри контуров и по численному значению фрактальной размерности, положению контуров и их площади судят о причинах, координатах и размерах выявленной патологии.Описание изобретения к патенту
Изобретение относится к лесному хозяйству, в частности к оперативному выявлению насаждений, пораженных насекомыми вредителями, и контролю экологического состояния лесов. Факторами, вызывающими лесопатологические явления, могут быть как вспышки массового размножения насекомых-вредителей, так и изменение условий среды под воздействием климатических аномалий или техногенного (антропогенного) воздействия на леса. Во всех случаях желательно обнаруживать лесопатологические изменения на ранней стадии, чтобы своевременно проводить лесозащитные мероприятия, пока отслеживаемые процессы не приняли необратимый характер. В полном объеме масштабные задачи лесопатологического мониторинга могут быть решены лишь с привлечением космических средств, позволяющих отслеживать происходящие процессы в лесных массивах на больших площадях, путем получения изображения лесов дистанционными методами с последующей их тематической обработкой. Известен "Способ оценки состояния лесов", патент РФ 2038001, кл. A 01 G 23/00, 1995 - аналог. В способе-аналоге осуществляют дистанционные спектрометрические измерения, с борта орбитальной станции, коэффициентов спектральной яркости зондируемой лесной площади в синем (В), зеленом (G) и красном (R) участках видимого спектра, рассчитывают значения хроматических коэффициентов жизненности
и красного поражения

вычисляют регрессию хроматических коэффициентов

тарируют ее по измерениям контрольных площадок с известными категориями состояния растений на них и оценивают состояние лесного массива (в баллах) по соотношению текущих расчетных значений g, r. Известный способ имеет следующие недостатки:
- невысокое пространственное разрешение спектрометрических средств (от сотен м до единиц км), не позволяющее обнаруживать участки поражения на начальной стадии "вспышки", размерами десятки метров;
- невозможность точной идентификации причины обнаруженной лесопатологии;
- статистическая неустойчивость результатов, поскольку оценка проводится по единственному измеряемому параметру - коэффициенту спектральной яркости. Ближайшим аналогом по технической сущности к заявляемому является "Способ обнаружения инвазий насаждений" (патент РФ 2105465, кл. А 01 G 23/00, G 01 V 6/00, 1998). В способе ближайшего аналога оцифрованные значения функции яркости изображения I(х, y) в виде матрицы дискретных отсчетов из | m


- потеря привязки обнаруженной лесопатологии на изображении к пространственным координатам;
- невозможность точной идентификации вида (причины) выявленной аномалии;
- потеря информации при перекодировке матрицы, исключающая возможность использования других независимых признаков изображения. Задача, решаемая данным изобретением, заключается в повышении точности и достоверности диагностических оценок путем использования для обнаружения лесопатологии нескольких независимых признаков анализируемого изображения и идентификации причины выявленной лесопатологии. Решение поставленной задачи обеспечивается тем, что в способе ранней лесопатологической диагностики, при котором получают оцифрованные значения функций яркости I(х, y) изображений в виде матриц дискретных отсчетов размерностью |m

фиг. 1 а, б - исходные спектрозональные R, G изображения анализируемых лесных массивов;
фиг. 2 - визуализированное изображение результирующей матрицы из попиксельных отношений матриц R, G;
фиг.3 - выявленные пространственным дифференцированием участки (контуры) лесопатологии;
фиг. 4 - графики функций фрактальной размерности типовых лесопатологических участков: 1 - здоровый лес (фоновый участок), 2 - лесная гарь, 3 - инвазия насекомых-вредителей;
фиг.5 - функциональная схема устройства, реализующего способ. Вновь введенные операции, образующие совокупность существенных признаков, обеспечивают достижение таких качественных свойств, как:
- устойчивость алгоритма обнаружения к изменению внешних условий съемки;
- локализация лесопатологических участков на изображении с их координатной привязкой;
- адекватность идентификации причин выявленной патологии. Техническая сущность изобретения заключается в следующем. Исходное спектрозональное изображение содержит несколько независимых признаков, таких как цвет, тон, текстура, топология, использование которых при обработке позволяет сопоставить каждому из них соответствующий параметр объекта наблюдения: размер, форму, фазу поражения. Чем большее количество независимых признаков используют при обработке, тем точнее и достовернее конечный результат диагностической оценки. Коэффициент спектральной яркости растительных сообществ формируется совокупным эффектом отражения, пропускания и поглощения лучистой энергии отдельными листьями, ветвями. До 90% лучистой энергии поглощается растениями непосредственно в процессе фотосинтеза. Поэтому коэффициент спектральной яркости растительности в видимом диапазоне составляет величину 2...9%. Поглощение и рассеяние лучистей энергии растениями определяется наличием и концентрацией пигментов, в основном хлорофилла, каротиноидов, а также содержанием влаги в хвое, листьях. В результате селективного поглощения у зеленых растений формируется спектральная область с двумя минимумами отражения в синен (В) и красной (R) зонах. И лишь небольшой максимум отражения в зоне (G) придает растительности зеленую окраску. При стрессовых ситуациях: недостаток минерального питания, влаги, накапливание в фотосинтезирующих органах вредных (техногенных) поллютантов, происходит разрушение фитопластов, уменьшение хлорофилла. При этом растения приобретают желтоватую окраску. Визуальными признаками лесопатологии являются некроз хвои, листьев, изменение окраски, уменьшение их линейных размеров, ажурность крон, усыхание ветвей, уменьшение степени охвоенности побегов, уменьшение общего объема фитомассы. Изменение окраски и объема фитомассы приводит к изменению регистрируемых значений коэффициентов спектральной яркости отслеживаемых участков растительности в соответствующих зонах видимого диапазона. Наибольшие изменения претерпевают значения коэффициентов спектральной яркости (





(см. , например, Выгодская Н.И., Горшкова И.И. Теория и эксперимент в дистанционных исследованиях растительности. Л.: Гидрометеоиздат, 1987, стр. 137-141). Таким образом, наиболее критичным диагностическим признаком внутреннего повреждения растительности является отношение коэффициентов спектральной яркости в зонах R, G. Если сами значения





изменяется в разы, что соответствует подчеркиванию контраста результирующего изображения между здоровыми и пораженными участками. Большой размах этих отношений позволяет выделять лесопатологические участки на результирующем изображении непосредственно методами пространственного дифференцирования. (см. , например, Р. Дуда, П.Харт. Распознавание образов и анализ сцен. Перевод с англ., М.: Мир, 1976, 7.3. Пространственное дифференцирование, стр.287-291). Другим селектируемым признаком лесопатологических участков служит форма их контура; круг, овал, изрезанность. Вспышки насекомых вредителей носят очаговый характер. Внутри очага и по периметру наблюдается сильная лекальная изрезанность - большой перепад отношений

между здоровыми и пораженными участками. В то же время лесопатология, вызванная климатическими аномалиями или техногенными перегрузками, характеризуется равномерной фазой поражения на протяженней площади. С математической точки зрения степень изрезанности контура является независимым топологическим признаком. В качестве числовой характеристики топологической структуры изображения используют показатель фрактальной размерности Хаусдорфа (см., например, Р.A. Burrough. "Fractal demensions of landscapes and other envinmental data, Nature 294, 1981, р.240). По определению размерность (Df) Хаусдорфа вычисляется

где







После этого


где a, b - пределы, в которых изменяется х;
с, d - пределы, в которых изменяется y. Фрактальная размерность участка внутри контура вычисляется как

Практически при применении данного алгоритма для вычисления фрактальной размерности производится вычисление f для последовательно уменьшающихся элементов измерения, в данном случае квадратиков со стороной







где П - установленный пороговый уровень (см., например, Дуда Р., Харт П. Распознавание образов и анализ сцен, перевод с англ. М.: Мир, 1976, стр. 267-288). Данная процедура представляется стандартной математической операцией, входящей в комплект специализированного программного обеспечения (см., например, ER MAPPEP 5.0 "Пакет программ для обработки изображений в науках о Земле, GENASYS, San Diego, USA, р.283-294). Результат программного вычисления контуров на анализируемом изображении иллюстрируется фиг.3. Для каждого выделенного таким образом контура вычисляют фрактальные размерности. На фиг. 4 представлены а) функции фрактальной размерности фоновых (здоровых) участков анализируемого изображения, б) функция фрактальной размерности лесной гари, в) функция фрактальной размерности инвазий. Алгоритм расчета реализован следующей сервисной программой:
Считывание спектра в матрицу М, размером 512 на 512 элементов
М:= READ_RED("C:Program FilesMathcad2000koroliov2")

G(j,A):=In(W(29-j,A))
I:=1..9
Koroliv:=G(I,M)
Фрактальная размерность спектрозонального изображения
FracRazm:=D(Koroliv) FracRazm=2.274 j:=0..511
Как следует из представленных графиков, функции фрактальной размерности инвазий характеризуются большим интервалом значений (от 2,1 до 2,4), расположенным ниже функций фоновой поверхности, и имеют большую крутизну. По положению контуров на изображении, их площади и значениям фрактальных коэффициентов судят о причинах и динамике лесопатологии. Эффективность заявляемого способа определяется достоверностью обнаружения аномалий и устойчивостью алгоритма при широком варьировании условий съемки и средств для получения изображений. Использование наряду с коэффициентами зональных отношений топологического признака обеспечивает достоверность и устойчивость диагностических оценок.
Класс A01G23/00 Лесное хозяйство
Класс G01V8/00 Разведка или обнаружение оптическими средствами
Класс G03B42/08 визуализация записей с использованием оптических средств
Класс G06F19/00 Устройства или способы цифровых вычислений или обработки данных для специальных применений