электрохимическая ячейка для измерения толщины покрытий металлами и сплавами
Классы МПК: | G01B21/08 для измерения толщины |
Автор(ы): | Тарасов В.В. (RU), Трубачев А.В. (RU), Черепанов И.С. (RU), Чуркин А.В. (RU) |
Патентообладатель(и): | Институт прикладной механики УрО РАН (RU) |
Приоритеты: |
подача заявки:
2002-08-12 публикация патента:
27.06.2004 |
Изобретение относится к области анализа металлических покрытий путем растворения микроучастка поверхности образца и может быть использовано для определения толщины и состава покрытия. Электрохимическая ячейка выполнена в виде полого цилиндра, снабженного резервной камерой с капилляром в основании. Она содержит также противоэлектрод и наконечник с калиброванным отверстием. Резервная камера совмещена с полым цилиндром и дополнительно оснащена подвижной поршневой системой, причем корпус ячейки снабжен приводом пространственного перемещения. Технический результат заключается в расширении функциональных возможностей, повышении точности измерений, упрощении конструкции и повышении технологичности. 2 з.п. ф-лы, 1 ил.
Рисунок 1
Формула изобретения
1. Электрохимическая ячейка для определения толщины покрытий металлами и сплавами, выполненная в виде полого цилиндра, снабженного резервной камерой с капилляром в основании, содержащая противоэлектрод и наконечник с калиброванным отверстием, отличающаяся тем, что резервная камера совмещена с полым цилиндром и дополнительно оснащена подвижной поршневой системой, причем корпус ячейки снабжен приводом пространственного перемещения.2. Электрохимическая ячейка по п.1, отличающаяся тем, что противоэлектрод расположен непосредственно в капиллярном канале наконечника.3. Электрохимическая ячейка по п.1, отличающаяся тем, что корпус ячейки выполнен из пластмассы.Описание изобретения к патенту
Изобретение относится к области анализа металлических покрытий путем растворения микроучастка поверхности образца с целью определения толщины и состава (для случая покрытия сплавами).Известны ячейки для измерения толщины металлопокрытий, работа которых основана на использовании кулонометрического метода. Они представляют собой корпус из стали или стеклоуглерода с капиллярным отверстием в основании для контакта рабочего электрода с электролитом, который заполняется рабочим раствором.Ячейку размещают на поверхности рабочего образца, заполнив раствором электролита, с помощью источника тока проводят растворение покрытия и фиксируют аналитический сигнал самопишущим устройством [1]. Недостатком данной системы является невозможность использования ячейки на другом участке покрытия без замены электролита. Кроме того, на границе покрытие - электролит вследствие малого диаметра капилляра контакт двух сред блокируется пузырьком воздуха, который приходится удалять.Наиболее близким к изобретению техническим решением является конструкция [2]. Она представляет собой цилиндрический корпус, снабженный насосом для откачки электролита в дополнительный резервуар, что позволяет производить расстыковку с поверхностью образца. Электролит подается и отводится путем изменения давления в рабочем корпусе. Момент окончания растворения покрытия фиксируется по счетчику. После этого по известным зависимостям рассчитывается толщина анализируемого покрытия.Недостатком данной системы является сложность конструкции зонда.Задача изобретения - расширение функциональных возможностей, повышение точности измерений, упрощение конструкции и повышение технологичности.Задача решается тем, что ячейка снабжена подвижной поршневой системой. При этом верхняя часть корпуса, являясь резервной камерой для отвода электролита, совмещена с рабочим резервуаром. Это позволяет производить отвод и перемешивание электролита без расстыковки с поверхностью образца, а также обеспечивает подъем ячейки, давая возможность перемещать ее от одной точки поверхности к другой для осуществления интегрального анализа.Технический результат заключается в том, что поршневая система ячейки позволяет проводить анализ совокупности точек поверхности (интегральный анализ), давая возможность получать комплексную оценку состояния поверхностных слоев образца.Для повышения точности измерений ячейки платиновый противоэлектрод расположен непосредственно в капиллярном канале наконечника. Наклон вольтамперной кривой, которая фиксируется самописцем и является аналитическим сигналом, определяется активным сопротивлением ячейки. Данная величина определяется расстоянием между катодом и анодом (противоэлектродом и рабочим образцом), которое в предлагаемой конструкции сводится к минимуму. Одной из конструктивных особенностей является возможность замены наконечника с целью тщательной промывки или изменения диаметра капилляра. Величина диаметра капилляра играет важную роль в процессе растворения, поскольку для малых (<1мм) значений диаметра сопротивление току в значительной степени зависит от площади растворяемого участка (сопротивление растекания). В этом случае возможность варьирования величины диаметра капилляра является исключительно важной. В комплект ячейки входит несколько наконечников с различными капиллярами.Для повышения технологичности и упрощения конструкции ячейки корпус, поршень и наконечники выполнены из пластмассы, при этом на боковую сторону корпуса нанесена градуировка по объему.На чертеже изображена ячейка для измерения толщины покрытий металлами и сплавами.Ячейка для измерения толщины покрытий металлами и сплавами состоит из корпуса 1, включающего резервную камеру 2, выполненного из пластмассы, пластмассового поршня 3, съемного пластмассового наконечника с калиброванным отверстием и эластичной обкладкой 4, платинового противоэлектрода 5, введенного через боковую стенку в капилляр наконечника.Устройство работает следующим образом: при помощи поршня 3 в рабочую камеру отбирается раствор электролита, ячейка устанавливается на поверхность рабочего электрода 6, включается развертка потенциала, идет процесс растворения, самопишущим устройством полярографа фиксируется вольтамперограмма. Затем поршень 3 отводится в резервную камеру 2 - при этом происходит перемешивание электролита, ячейка поднимается и переводится к следующей точке, после чего анализ проводится аналогичным способом. Анализ повторяется на выбранном количестве точек поверхности. Отработанный электролит выводится при помощи поршня 3, ячейка промывается.Источники информации1. Н.Н.Кузьмина, В.И.Рунтов, О.А.Сонгина. Анодно-полярографический метод определения толщины и состава биметаллического покрытия. // Заводская лаборатория, 1969, т.35, № 9, с.274-276.2. Ю.К.Вегис, Л.С.Бабаджанов. Кулонометрические толщиномеры и их метрологическое обеспечение. // Измер. техника, 1996, № 3, с.27-31 (прототип).Класс G01B21/08 для измерения толщины