способ получения полиэфира
Классы МПК: | C08G63/16 дикарбоновые кислоты и диоксисоединения |
Автор(ы): | Чулкова Ю.С. (RU), Немилов В.Е. (RU), Орлова Т.В. (RU), Царев Г.И. (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский Государственный Университет технологии и дизайна" (СПГУТД) (RU) |
Приоритеты: |
подача заявки:
2004-06-16 публикация патента:
20.10.2005 |
Изобретение относится к способу получения полиэфира методом поликонденсации полифункциональных органических соединений природного происхождения с адипиновой или себациновой кислотой и к утилизации отходов лесохимической промышленности. Полученный полимер может быть использован в качестве связующего в производстве древесно-волокнистых или древесно-стружечных плит. Техническая задача - упрощение технологии получения полиэфира, снижение температуры плавления получаемого полимера и сохранение прочности композиционных материалов на основе данного полиэфира. Предложен способ получения полиэфира поликонденсацией между субериновыми кислотами (СК), адипиновой (АК) или себациновой (СебК) кислотой и диамином, выбранным из п-фенилендиамина (п-ФД), о-фенилендиамина (о-ФД) и гексаметилендиамина (ГМДА) при массовом соотношении СК:(АК или СебК):(п-ФД, или о-ФД, или ГМДА)=10:(2-4):(3,1-6,2), причем процесс проводят при температуре 150-220°С в течение 1,5-2,5 часа. 1 з.п. ф-лы, 2 табл.
Формула изобретения
1. Способ получения полиэфира, заключающийся в поликонденсации полифункциональных органических соединений природного происхождения с адипиновой кислотой или себациновой при повышенной температуре в инертной среде, отличающийся тем, что процесс поликонденсации осуществляют между субериновыми кислотами, адипиновой кислотой или себациновой и n-фенилендиамином, или о-фенилендиамином, или гексаметилендиамином при массовом соотношении субериновые кислоты: адипиновая или себациновая кислота: п-фенилендиамин, или о-фенилендиамин, или гексаметилендиамин - 10:(2÷4):(3,1÷6,2) при температуре 150-220°С.
2. Способ по п.1, отличающийся тем, что продолжительность процесса поликонденсации составляет 1,5-2,5 ч.
Описание изобретения к патенту
Изобретение относится к области полимерной химии и утилизации отходов лесохимической промышленности, а именно к способу получения полиэфира, методом поликонденсации полифункциональных органических соединений природного происхождения с адипиновой или себациновой кислотой. Получаемый полимер может быть использован в качестве связующего в производстве древесно-волокнистых или древесно-стружечных плит.
Субериновые кислоты представляют собой смесь алифатических C18-С32 моно- и дикарбоновых насыщенных и ненасыщенных окси- и эпоксикислот. Наличие всех этих функциональных групп дает возможность использовать их в качестве мономеров при получении высокомолекулярных соединений по методу поликонденсации.
Таблица 1 Состав субериновых кислот | |
Кислота | % по массе |
Октадекан-9-ен-1,18-диовая | 2,1-3,9 |
Октадекан-1,18-диовая | 0,5-1,5 |
18-Гидроксиоктадец-9-еновая | 6,0-17,1 |
9,16- и 10,16-Дигидроксигексадекановая | 2,3-6,2 |
9,10-Эпокси-18-гидроксиоктадекановая | 29,2-43,2 |
20-Гидроксиэйкозановая | 2,3-4,4 |
9,10,18 - Тригидроксиоктадекановая | 6,3-11,4 |
Докозан-1,22-диовая | 3,6-7,4 |
22-Гидроксидокозановая | 11,7-17,4 |
Прочие | 9,5-14,7 |
В таблице 1 приведены кислоты с наибольшим содержанием в бересте (Кислицын А.Н. Экстрактивные вещества бересты: выделение, состав, свойства, применение. Химия древесины. - 1994. - №3. - C.11).
В уровне техники известны исследования в области получения полимеров на основе субериновых кислот, а именно: лаковых смол, получаемых методом конденсации бетулино-субериновых смесей с фталевым ангидридом (Поварнин И.Г. Спиртовые мебельные лаки отечественного лесохимического сырья. - М., 1949, с.78-80).
Существенным недостатком данного способа является то, что он требует большого количества времени и энергозатрат (продолжительность процесса конденсации составляет 16 часов, при температуре 170°С), что в свою очередь делает данный способ получения полимера экономически невыгодным. Дополняющим недостатком данных полимеров является то, что такие смолы после холодной сушки обладают плохими адгезионными свойствами, а после горячей сушки оказываются очень хрупкими.
Известны также полиуретаны, получаемые на основе субериновых кислот (Cordeiro N., Belgacem M.N., Candini A., Pascoal Neto С., Urethanes and polyurethanes from suberin: 1.Kinetic study// Industrial Crops and Products, Vol.6, Iss.2. - 1997. - P.163-167).
Недостатком таких полимеров является то, что они высокоэластичны и их переработка возможна только через растворы, что резко снижает их область применения в качестве связующих.
Также известны смолы, приготовляемые на основе этерифицированных бетулином субериновых кислот (Поварнин И.Г. Спиртовые мебельные лаки из отечественного лесохимического сырья. М., Всесоюзное кооперативное изд-во, 1949, с.71-73). Такие смолы хорошо растворяются в ряде органических растворителей, таких как скипидар, бензол, спиртбензол, ацетаты, этилметилкетон, и имеют хорошую адгезию к стеклу и металлу. Однако существенным недостатком этих смол является плохая адгезия к дереву, что исключает возможность их применения в производстве ДВП и ДСП.
Наиболее близким аналогом к заявляемому изобретению является способ получения полиэфира путем поликонденсации бетулина с дикарбоновой кислотой в инертной среде (азот) при постоянном перемешивании в диапазоне температур 256-260°С и продолжительности процесса 22-24 часа (патент РФ №2167892, МПК C 08 G 63/197, опубл. в Бюлл. изоб. №15, 27.05.2001; Орлова Т.В., Немилов В.Е., Царев Г.И., Войтова Н.В. Способ получения полиэфира). Температура плавления данных полиэфиров составляет 200-230°С. Древесно-волокнистые композиты на основе данных полиэфиров обладают прочностью на растяжение 65-77 МПа.
Недостаток данного способа получения связующего состоит в том, что он является достаточно энергоемким, поскольку температура процесса конденсации составляет 256-260°С и продолжительность соответственно 22-24 часа.
Техническим результатом настоящего изобретения является упрощение технологии получения полиэфира за счет снижения температуры поликонденсации и снижения продолжительности процесса при одновременном снижении температуры плавления полученного полимера, а также при одновременном сохранении прочности композиционных материалов на основе данного полиэфира.
Поставленная цель достигается тем, что в заявляемом способе получения полиэфира, заключающемся в поликонденсации полифункциональных органических соединений природного происхождения с адипиновой кислотой или себациновой при повышенной температуре в инертной среде (азот), процесс поликонденсации осуществляют между: субериновыми кислотами (СК), адипиновой кислотой (АК), n-фенилендиамином (n-ФД), себациновой кислотой (СебК), о-фенилендиамином (о-ФД), гексаметилендиамином (ГДА) при массовом соотношении СК: АК или СебК: n-ФД, или о-ФД, или ГДА - 10:(2÷4):(3,1÷6,2), причем процесс проводят при температуре 150-220°С и продолжительности процесса 1,5-2,5 часа.
Существенными отличиями заявляемого изобретения является использование в определенном соотношении с субериновыми кислотами дикарбоновой кислоты и диамина, в качестве которых используются адипиновая кислота или себациновая кислота и n-фенилендиамин, или о-фенилендиамин, или гексаметилендиамин. Выбор адипиновой кислоты и себациновой кислоты обусловлен тем, что они способны конденсироваться в линейную макромолекулу и тем самым препятствовать образованию пространственной сетки при поликонденсации субериновых кислот, а n-фенилендиамин, о-фенилендиамин и гексаметилендиамин были выбраны с целью регулирования температуры плавления и жесткости цепи полимера.
Согласно заявляемому техническому решению поликонденсация мономеров происходит за счет взаимодействия реакционноспособных групп субериновых кислот, таких как карбоксильные, гидроксильные и эпоксидные группы между собой и с аминогруппами n-фенилендиамина (о-фенилендиамина или гексаметилендиамина) и карбоксильными группами адипиновой кислоты (себациновой кислоты), эти взаимодействия можно изобразить с помощью следующих реакций.
Из представленных выше реакций отчетливо видно, что в структуре получаемого полимера образуются простые эфирные связи (реакция 2), сложные эфирные связи (реакция 1), амидные связи (реакция 4) и аминные связи (реакция 5).
Таким образом получены новые полиэфироамиды, сополимеры субериновых кислот, адипиновой кислоты (или себациновой) и n-фенилендиамина (или о-фенилендиамина, или гексаметилендиамина), обладающие разветвленной структурой и степенью превращения до 0,99.
Заявляемый способ реализуется следующим образом.
Пример 1. В реактор загружаются субериновые кислоты, адипиновая кислота и n-фенилендиамин в соотношении СК:АК:ПФД, равном 10:2:3,1, подается азот, после чего реактор нагревается до 150°С, и реакцию поликонденсации проводят в течение 1,5 часа при перемешивании, после окончания процесса полученный полимер выгружается.
В таблице 2 приведены параметры и показатели процесса и характеристики готовой продукции.
Преимущество предлагаемого изобретения по сравнению с прототипом заключается в том, что процесс поликонденсации субериновых кислот с бифункциональными веществами, такими как адипиновая, себациновая кислоты, n-фенилендиамин, о-фенилендиамин и гексаметилендиамин, осуществляется при более низкой температуре (до 220°С) и продолжительности процесса 1,5-2,5 часа, что значительно упрощает технологию процесса синтеза полимера. Дополнительным преимуществом является то, что температура плавления полученных полиэфироамидов ниже, чем у прототипа, и составляет 133-149°С.
Полученные полиэфиры с показателями по степени превращения 0,80-0,99 и температурой плавления 133-149°С берут в соотношении 20:80 с древесным волокном, прессуют при t - 200°С и давлении 6 МПа в течение 1 мин/мм толщины. Готовая продукция (древесно-волокнистые плиты) обладают прочностью 77-83 МПа, что в 1,5-2 раза выше показателя ГОСТ на промышленно выпускаемые аналоги. Прочность оценивалась по методике ГОСТ 11262-80.
Из экспериментальных данных, приведенных в таблице 2, видно, что в сравнении с прототипом по заявляемому способу получен полиэфир с температурой плавления 133-149°С, что дает возможность его использования в качестве связующего в технологии полимерных композиционных материалов. Получаемые таким образом материалы обладают высокими прочностными свойствами, не уступающими прототипу.
Из таблицы 2 видно, что при повышении температуры процесса поликонденсации (примеры №1-3) степень превращения полученного полиэфира увеличивается, а также увеличивается прочность древесно-волокнистых плит.
При увеличении продолжительности процесса (примеры №2, 4, 5) также наблюдается возрастание степени превращения и температуры плавления получаемых полиэфиров, при этом прочность плит лежит в диапазоне, соответствующем прочности плит, получаемых по прототипу.
Изменение соотношения компонентов (примеры №1, 7, 12) во всем диапазоне заявляемых температур и продолжительности процесса позволяет получить плиты с прочностью, равной прочности плит, соответствующих прототипу.
Таблица 2 Параметры процесса поликонденсации и характеристики получаемых полимеров | ||||||
№/№ | Соотношение компонентов, мас.% | Температура, °С | Продолжительность процесса, ч | Степень превращения | Температура плавления, °С | Прочность плит, МПа |
Субериновые кислоты: адипиновая кислота: n-фенилендиамин | ||||||
1 | 10:2:3,1 | 150 | 1,5 | 0,85 | 139 | 77 |
2 | 10:2:3,1 | 180 | 1,5 | 0,87 | 142 | 78 |
3 | 10:2:3,1 | 220 | 1,5 | 0,88 | 143 | 79 |
4 | 10:2:3,1 | 180 | 2 | 0,90 | 146 | 79 |
5 | 10:2:3,1 | 180 | 2,5 | 0,95 | 148 | 83 |
6 | 10:3:4,6 | 150 | 1,5 | 0,83 | 138 | 77 |
7 | 10:3:4,6 | 180 | 1,5 | 0,88 | 143 | 78 |
8 | 10:3:4,6 | 220 | 1,5 | 0,94 | 148 | 83 |
9 | 10:3:4,6 | 150 | 2 | 0,86 | 140 | 78 |
10 | 10:3:4,6 | 150 | 2,5 | 0,93 | 147 | 83 |
11 | 10:4:6,2 | 150 | 1,5 | 0,80 | 137 | 77 |
12 | 10:4:6,2 | 180 | 1,5 | 0,89 | 145 | 79 |
13 | 10:4:6,2 | 220 | 1,5 | 0,95 | 149 | 79 |
14 | 10:4:6,2 | 150 | 2 | 0,86 | 140 | 78 |
15 | 10:4:6,2 | 150 | 2,5 | 0,97 | 149 | 78 |
Субериновые кислоты: адипиновая кислота: о-фенилендиамин | ||||||
16 | 10:3,8:6,0 | 200 | 2,3 | 0,98 | 146 | 78 |
Субериновые кислоты: себациновая кислота: n-фенилендиамин | ||||||
17 | 10:3,4:6,1 | 215 | 2,5 | 0,98 | 146 | 77 |
Субериновые кислоты: себациновая кислота: о-фенилендиамин | ||||||
18 | 10:3,1:6,1 | 210 | 2,4 | 0,99 | 144 | 78 |
Субериновые кислоты: адипиновая кислота: гексаметилендиамин | ||||||
19 | 10:3,9:6,0 | 220 | 2,5 | 0,98 | 136 | 77 |
Субериновые кислоты: себациновая кислота: гексаметилендиамин | ||||||
20 | 10:3,8:6,0 | 215 | 2,5 | 0,99 | 133 | 77 |
Прототип (Бетулин: себациновая кислота) | ||||||
21 | 1:1,034 | 260 | 23 | 0,996 | 200 | 65-77 |
Замена адипиновой кислоты на себациновую кислоту в полиэфире (пример №18) также позволяет получить плиты с прочностью, не уступающей прототипу. Замена n-фенилендиамина на о-фенилендиамин (пример №17, 19) или гексаметилендиамин (пример №20, 21) в случае использования себациновой или адипиновой кислоты также позволяет получить плиты с прочностью соответствующей прочности плит по прототипу.
Также надо отметить, что во всех случаях степень превращения полиэфиров по заявляемому способу ниже, чем у прототипа, но прочность получаемых плит равна прочности плит по прототипу. Температура плавления получаемых полиэфиров по заявляемому способу не зависимо от соотношения компонентов и компонентного состава меньше, чем у прототипа, что делает процесс получения древесно-волокнистых плит более экономичным.
Класс C08G63/16 дикарбоновые кислоты и диоксисоединения