способ подготовки электролита для электролитического рафинирования меди
Классы МПК: | C25C1/12 меди C25D3/38 меди |
Автор(ы): | Скирда Ольга Ивановна (RU), Ладин Николай Алексеевич (RU), Юрьев Александр Иванович (RU), Шиловских Владимир Анатольевич (RU), Дылько Георгий Николаевич (RU), Елисеев Олег Дмитриевич (RU), Бондарев Михаил Тимофеевич (RU) |
Патентообладатель(и): | ОАО "Горно-металлургическая компания "Норильский никель" (RU) |
Приоритеты: |
подача заявки:
2004-10-18 публикация патента:
20.07.2006 |
Изобретение относится к области гидрометаллургии цветных металлов, в частности к электролитическому рафинированию меди, и может быть использовано в гальванотехнике. Способ приготовления электролита для электролитического рафинирования меди включает введение в электролит комплекса поверхностно-активных веществ, в числе которых используют тиокарбомид. При этом тиокарбомид предварительно растворяют в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбомиде, равном 20-600 при температуре 40-70°С в течение 10-70 часов. В качестве сульфатного раствора меди для обработки тиокарбамида используют исходный электролит. Использование изобретения позволяет получить катодную медь, имеющую гладкую поверхность, низкое содержание серы, высокие физико-механические показатели, в частности спиральное удлинение, характеризующее способность меди к прокатываемости. 1 з.п. ф-лы, 1 табл.
Формула изобретения
1. Способ приготовления электролита для электролитического рафинирования меди, включающий введение в сульфатный электролит комплекса поверхностно-активных веществ, в числе которых вводят тиокарбамид, с предварительным растворением тиокарбамида, отличающийся тем, что тиокарбамид растворяют в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 20-600 при температуре 40-70°С и выдерживают при температуре 40-70°С в течение 10-70 ч.
2. Способ по п.1, отличающийся тем, что в качестве сульфатного раствора меди при обработке тиокарбамида используют исходный электролит.
Описание изобретения к патенту
Изобретение относится к области гидрометаллургии цветных металлов, в частности к электролитическому рафинированию меди, и может быть использовано в гальванотехнике.
Известен способ приготовления электролита для электролитического рафинирования меди, включающий введение в сульфатный электролит комплекса поверхностно-активных веществ (ПАВ), в числе которых вводят тиокарбамид (тиомочевину). Добавки ПАВ растворяют в воде и в виде водных растворов вводят в электролит, поступающий в электролизные ванны. При этом расход тиокарбамида составляет 90 г на тонну меди, получаемой при электролизе. Способ позволяет в процессе электрорафинирования при плотности тока 310-320 А/м2 получать медные катоды марки М0к, характеризующиеся мелкокристаллической структурой, бороздчатой поверхностью и относительно высоким содержанием серы [1].
Недостатком известного способа является повышенное содержание серы в катодной меди, обусловленное значительным расходом тиокарбамида серосодержащего соединения, используемого в качестве добавки ПАВ, так как при добавке водного раствора тиокарбамида в электролит непосредственно перед электролизом его сера переходит в катодную медь. В свою очередь, сера, содержащаяся в катодной меди, оказывает негативное влияние на физико-механические свойства меди, в частности ухудшает показатель спирального удлинения. Спиральное удлинение является основным показателем, используемым в мировой практике, наряду с химическим составом для оценки пригодности катодной меди при производстве катанки методом непрерывного литья и проката, то есть характеризующим прокатываемость катодной меди. Другим недостатком способа является недостаточно высокая марка катодной меди М0к, гарантированно получаемая в результате процесса электрорафинирования при использовании приготовленного электролита. Следующим недостатком известного способа являются повышенные затраты электроэнергии на производство катодной меди в процессе электрорафинирования меди, обусловленные значительным расходом тиокарбамида, используемым в качестве добавки ПАВ.
Известен способ приготовления электролита для электролитического осаждения меди, включающий введение в сульфатный электролит комплекса ПАВ, в числе которых вводят тиокарбамид (тиомочевину). Каждую добавку ПАВ растворяют в воде и в виде водных растворов вводят в электролит, поступающий в электролизные ванны. При этом расход тиокарбамида составляет 70 г на тонну меди, получаемой при электролизе. Способ позволяет в процессе электролитического рафинирования получать медные катоды марок М00к и М0к, характеризующиеся мелкокристаллической структурой [2].
Недостатком известного способа является повышенное содержание серы в катодной меди, обусловленное значительным расходом тиокарбамида серосодержащего соединения, используемого в качестве добавки ПАВ, так как при добавке в электролит водного раствора тиокарбамида непосредственно перед электролизом его сера переходит в катодную медь. В свою очередь, сера, содержащаяся в катодной меди, оказывает негативное влияние на физико-механические свойства меди, в частности ухудшает показатель спирального удлинения. Спиральное удлинение является основным показателем, используемым в мировой практике, наряду с химическим составом для оценки пригодности катодной меди при производстве катанки методом непрерывного литья и проката, то есть характеризующим прокатываемость катодной меди. Другим недостатком способа является недостаточно высокая марка катодной меди М0к, получаемая в результате процесса электрорафинирования при использовании приготовленного электролита. Следующим недостатком являются повышенные затраты электроэнергии на производство катодной меди в процессе электрорафинирования меди, обусловленные значительным расходом тиокарбамида, применяемым в качестве добавки ПАВ.
Известен способ приготовления сульфатного электролита для электролитического рафинирования меди, включающий введение в электролит комплекса ПАВ, в числе которых вводят тиокарбамид, (тиомочевину). Добавки ПАВ, в том числе тиокарбамид, растворяют в воде при комнатной температуре и вводят в электролит, поступающий в электролизные ванны. При этом расход каждой добавки ПАВ составляет 50-150 г на тонну меди, получаемой при электролизе [3]. Способ позволяет в процессе электролитического рафинирования получать медные катоды, характеризующиеся мелкокристаллической структурой.
Недостатком известного способа является повышенное содержание серы в катодной меди, обусловленное значительным расходом тиокарбамида (серосодержащего соединения), вводимого в качестве добавки ПАВ. В свою очередь, сера, содержащаяся в катодной меди, оказывает негативное влияние на физико-механические свойства меди, в частности ухудшает показатель спирального удлинения, характеризующий прокатываемость катодной меди. Другим недостатком способа является недостаточно высокая марка катодной меди М0к, гарантированно получаемая в результате процесса электрорафинирования при использовании приготовленного электролита. Еще одним недостатком являются повышенные затраты электроэнергии на производство катодной меди в процессе электрорафинирования, обусловленные значительным расходом тиокарбамида, вводимого в сульфатный электролит в качестве добавки ПАВ.
Наиболее близким к заявляемому способу по совокупности существенных признаков является способ электролитического рафинирования меди из сернокислых электролитов, включающий введение в электролит 2-5 мг/л продукта конденсации тиомочевины и аминоамидов жирных кислот. Добавки ПАВ, в том числе продукт конденсации тиомочевины и аминоамидов жирных кислот, растворяют в воде при 60-70°С и вводят в электролит, поступающий в электролизные ванны. При этом концентрация продукта конденсации тиомочевины и аминоамидов жирных кислот составляет 2-5 г/л [4]. Способ позволяет в процессе электролитического рафинирования получать плотные без дендритов медные катоды.
Недостатком известного способа-прототипа является повышенное (0,001%) содержание серы в катодной меди. В свою очередь, сера, содержащаяся в катодной меди, оказывает негативное влияние на физико-механические свойства меди, в частности ухудшает показатель спирального удлинения, характеризующий прокатываемость катодной меди. Другим недостатком способа является недостаточно высокая марка катодной меди М0к, получаемая в результате процесса электрорафинирования при использовании приготовленного электролита. Еще одним недостатком являются повышенные затраты электроэнергии на производство катодной меди в процессе электрорафинирования.
Задача изобретения заключается в повышении качества катодной меди и снижении удельного расхода электроэнергии на ее производство.
Технический результат от использования изобретения заключается в получении катодной меди, имеющей гладкую без дендритов поверхность, низкое содержание серы, высокие физико-механические показатели, в частности спиральное удлинение, характеризующее способность меди к прокатываемости.
Сущность предлагаемого изобретения заключается в том, что в сульфатный электролит для электролитического рафинирования меди вводят комплекс добавок ПАВ, в числе которых вводят тиокарбамид. При этом тиокарбамид предварительно растворяют в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 20-600, при температуре 40-70°С и выдерживают при температуре 40-70°С в течение 10-70 часов. Другое отличие способа состоит в том, что в качестве сульфатного раствора меди для обработки тиокарбамида используют исходный электролит.
Экспериментально установлено, что способ по п.1 или п.2 приготовления электролита для электролитического рафинирования меди позволяет за счет предварительного растворения тиокарбамида в сульфатном растворе меди и выдержки раствора при температуре 40-70°С в течение 10-70 часов получать катодную медь, характеризующуюся гладкой поверхностью, мелкокристаллической структурой и низким содержанием серы. Кроме того, предлагаемый способ подготовки электролита позволяет снизить расход электроэнергии на производство 1 тонны электролитной меди.
В способах приготовления электролита для электролитического рафинирования меди, включающих введение в электролит комплекса добавок ПАВ, в числе которых вводят тиокарбамид, указанных аналогах и прототипе отсутствует предварительное растворение тиокарбамида в сульфатном растворе меди и выдержка этого раствора при температуре 40-70°С в течение 10-70 часов.
В случае отсутствия предварительного растворения тиокарбамида в сульфатном растворе меди и выдержки этого раствора при температуре 40-70°С в течение 10-70 часов для получения в результате электрорафинирования катодной меди, характеризующейся гладкой поверхностью и мелкокристаллической структурой, необходимо увеличить расход тиокарбамида (описание аналогов) или вводить другое ПАВ (прототип). В свою очередь, увеличение расхода тиокарбамида приводит к повышению содержания серы в катодной меди, снижению ее физико-механических свойств и увеличению удельного расхода электроэнергии на ее производство.
Увеличение в предлагаемом способе количества ионов меди в сульфатном медном растворе более чем необходимо для обеспечения верхнего предела предлагаемого диапазона отношений ионов меди и серы, содержащейся в тиокарбамиде, равного 20-600, создаст трудности исполнения, связанные со значительным увеличением промежуточного оборудования для растворения и выдержки при приготовлении добавки тиокарбамида, и потребует неоправданного дополнительного расхода энергоресурсов для поддержания необходимой температуры раствора.
Уменьшение в предлагаемом способе количества ионов меди в сульфатном медном растворе менее чем необходимо для обеспечения нижнего предела предлагаемого диапазона отношений ионов меди и серы, содержащейся в тиокарбамиде, равного 20-600, приведет к образованию ограниченно растворимых соединений, затрудняющих исполнение способа и способных негативно повлиять на процесс электролитического рафинирования меди.
Уменьшение ниже 40°С температуры раствора, поддерживаемой при предварительном растворении и выдержке раствора тиокарбамида, не позволит достичь поставленной цели, а именно в результате электролитического рафинирования получить катодную медь, характеризующуюся гладкой поверхностью и мелкокристаллической структурой при снижении расхода тиокарбамида, используемого в числе комплекса добавок ПАВ.
Увеличение выше 70°С температуры раствора, поддерживаемой при предварительном растворении и выдержке раствора тиокарбамида, приводит к его разложению, что отрицательно влияет на поверхностно-активные свойства и не позволит достичь поставленной цели, а именно в результате электролитического рафинирования получить катодную медь, характеризующуюся гладкой поверхностью и мелкокристаллической структурой, при снижении расхода тиокарбамида, используемого в числе комплекса добавок ПАВ.
Уменьшение продолжительности предварительной выдержки менее 10 часов не позволит достичь поставленной цели, а именно в результате электролитического рафинирования получить катодную медь, характеризующуюся гладкой поверхностью и мелкокристаллической структурой, при снижении расхода тиокарбамида, вводимого в числе комплекса добавок ПАВ.
Увеличение продолжительности предварительной выдержки раствора тиокарбамида более 70 часов создает трудности исполнения, связанные со значительным увеличением промежуточного оборудования для приготовления раствора тиокарбамида, и потребует неоправданного дополнительного расхода энергоресурсов для поддержания необходимой температуры раствора.
Сведений об известности отличительного признака предлагаемого технического решения при изучении патентной и технической литературы не выявлено, что свидетельствует о соответствии заявляемого объекта критерию «изобретательский уровень».
Способ осуществляется следующим образом.
Тиокарбамид предварительно растворяют при температуре 40-70°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 20-600, и выдерживают раствор тиокарбамида при температуре 40-70°С в течение 10-70 часов. Приготовленный раствор вводят в числе других растворов, входящих в комплекс добавок ПАВ, в поток электролита, поступающего в электролизные ванны для осуществления процесса электролитического рафинирования меди.
Процесс электролитического рафинирования меди осуществляется следующим образом. В электролизные ванны на токоподводящие анодную и катодную шины завешивают соответствующие электроды. В качестве анодов используют литые пластины из меди огневого рафинирования, в качестве катодов - тонкие листы из электролитной меди (основа) или матрицы из титана (или нержавеющей стали). На электролизную ванну подают постоянный электрический ток из расчета катодной плотности тока 250-360 А/м2 .
Электрохимическое растворение медных анодов и катодное осаждение меди из сульфатного электролита осуществляют при его постоянной циркуляции и температуре 60-65°С.
Эффективность способа оценивается по результатам электролиза в части удельного расхода электроэнергии и получения катодной меди, имеющей гладкую поверхность, мелкокристаллическую структуру, низкое содержание серы и высокое значение спирального удлинения, характеризующего прокатываемость меди. Предлагаемый способ описан в конкретных примерам и таблице 1.
Пример 1 (таблица 1, опыт 1) - реализация способа прототипа.
Заданные количества добавок ПАВ, рассчитанные по расходу, г/тCu: клея - 70 (1,6 г/дм3 ); продукта конденсации тиокарбамида (тиомочевины) и аминоамидов жирных кислот - 85 (2,0 г/дм3) растворяли в дистиллированной воде при температуре 70°С. Приготовленные растворы каждого ПАВ вводили в сульфатный электролит для электролитического рафинирования меди, поступающий в электролизную ванну. Для опыта использовали сульфатный электролит следующего состава, г/дм3: меди - 50-55; никеля - 19-22; серной кислоты - 155-161; хлор-иона - 0,045-0,050.
Электролитическое рафинирование меди осуществляли на лабораторной установке, состоящей из электролизной ванны емкостью 4 дм3 и напорного бачка емкостью 10 л. Ванну обеспечивали индивидуальной системой циркуляции и оборудовали анодной и катодной шинами, подключенными через лабораторный автотрансформатор (ЛАТР) к выпрямителю ВСА-5. На катодную и анодную шины электролизной ванны на расстоянии 4 см завешивали один катод, два медных анода и пропускали постоянный ток. Катодная плотность тока составляла 310 А/м2. Добавки ПАВ в течение испытаний вводили с равной периодичностью. В течение эксперимента поддерживали температуру электролита 60-65°С, скорость циркуляции 4 дм 3/ч. Продолжительность эксперимента составляла 94 часа.
В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями:
- мелкокристаллической структурой;
- наличием мелких округлых наростов;
- содержанием серы - 10 г/т;
- низким показателем спирального удлинения, равным 368 мм.
Удельный расход электроэнергии составил 336 кВт·ч/тCu.
Пример 2 (таблица 1, опыт 2) - реализация способа-прототипа.
Эксперимент осуществляли при тех же условиях, что и пример 1. Пример 2 отличался от примера 1 расходом продукта конденсации тиокарбамида (тиомочевины) и аминоамидов жирных кислот на тонну катодной меди, который составлял - 200 (5,0 г/дм3).
В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями:
- мелкокристаллической структурой;
- незначительной бороздчатостью;
- содержанием серы - 12 г/т;
- спиральным удлинением, равным 351 мм.
Удельный расход электроэнергии составил 371 кВт·ч/тCu.
Пример 3 (таблица 1, опыт 3) - реализация способа прототипа
Эксперимент осуществляли при тех же условиях, что и пример 1. Пример 3 отличался от примера 1 расходом продукта конденсации тиокарбамида (тиомочевины) и аминоамидов жирных кислот на тонну катодной меди, который составлял - 200 (5,0 г/дм3), и концентрацией никеля (25 г/дм3) и серной кислоты (120 г/дм3).
В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями:
- мелкокристаллической структурой;
- незначительной бороздчатостью;
- содержанием серы - 14 г/т;
- низким показателем спирального удлинения, равным 339 мм.
Удельный расход электроэнергии составил 445 кВт·ч/т Cu.
Пример 4 (таблица 1, опыт 4) - реализация заявляемого способа
Эксперимент по электролитическому рафинированию меди осуществляли при тех же условиях, что и пример 1. Пример 4 отличался от примера 1 введением в качестве добавок растворов ПАВ, рассчитанных по расходу, г/тCu: клея - 70 и тиокарбамида - 30 г. При этом раствор тиокарбамида предварительно приготавливали.
Тиокарбамид растворяли при температуре 40°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 20, и выдерживали раствор тиокарбамида при температуре 40°С в течение 10 часов.
Приготовленный раствор вводили в числе других растворов, входящих в комплекс добавок ПАВ, в поток электролита, поступающего в процессе электролитического рафинирования меди в электролизные ванны при осуществлении процесса электролитического рафинирования меди.
Добавки ПАВ в течение испытаний вводили с равной периодичностью. В течение эксперимента поддерживали температуру электролита 60-65°С, скорость циркуляции 4 дм3/ч. Продолжительность эксперимента составляла 94 часа.
В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями:
- мелкокристаллической структурой и гладкой поверхностью катода;
- содержанием серы - 6 г/т;
- высоким показателем спирального удлинения, равным 419 мм.
Удельный расход электроэнергии составил 284 кВт·ч/тCu.
Пример 5 (таблица 1, опыт 5) - реализация заявляемого способа
Эксперимент осуществляли при тех же условиях, что и пример 4. Пример 5 отличался от примера 4 условиями подготовки раствора тиокарбамида.
Подготовка раствора тиокарбамида содержала следующие операции:
- растворение при температуре 70°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 600;
- выдержку приготовленного раствора в течение не более 70 часов при температуре 70°С.
В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями:
- мелкокристаллической структурой и гладкой поверхностью катода;
- содержанием серы - 5 г/т;
- высоким показателем спирального удлинения, равным 424 мм.
Удельный расход электроэнергии составил 300 кВт·ч/тCu.
Пример 6 (таблица 1, опыт 6) - реализация заявляемого способа
Эксперимент осуществляли при тех же условиях, что и пример 4. Пример 6 отличался от примера 4 условиями подготовки раствора тиокарбамида.
Подготовка раствора тиомочевины содержала следующие операции:
- растворение при температуре 60°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 300;
- выдержку приготовленного раствора в течение 24 часов при температуре 60°С.
В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями:
- мелкокристаллической структурой и гладкой поверхностью катода;
- содержанием серы - 4 г/т;
- высоким показателем спирального удлинения, равным 431 мм.
Удельный расход электроэнергии составил 292 кВт·ч/т Cu.
Пример 7 (таблица 1, опыт 7) - реализация за пределами диапазона заявляемого способа
Эксперимент осуществляли при тех же условиях, что и пример 4. Пример 7 отличался от примера 4 условиями подготовки раствора тиокарбамида.
Подготовка раствора тиомочевины содержала следующие операции:
- растворение при температуре 30°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 18;
- выдержку приготовленного раствора в течение 8 часов при температуре 30°С.
В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями:
- наличием мелких дендритных наростов на поверхности катода;
- содержанием серы - 8 г/т серы;
- спиральное удлинение было равно 348 мм.
Удельный расход электроэнергии составил 314 кВт·ч/тCu.
Полученные результаты, а именно снижение качества катодной меди по внешнему виду, увеличение содержания в ней серы, снижение физико-механического показателя спирального удлинения и увеличение удельного расхода электроэнергии относительно примеров 4-6, показывают, что условия подготовки тиокарбамида не являются оптимальными.
Пример 8 (таблица 1, опыт 8) - реализация способа за пределами заявляемого диапазона.
Эксперимент осуществляли при тех же условиях, что и пример 4. Пример 8 отличался от примера 4 условиями подготовки раствора тиокарбамида.
Подготовка раствора тиомочевины содержала следующие операции:
- растворение при температуре 80°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 650;
выдержку приготовленного раствора в течение 80 часов при температуре 90°С.
Использование, в данном случае, значительной величины массового отношения ионов меди и серы, содержащейся в тиокарбамиде, привело к неоправданному увеличению объемов раствора тиокарбамида при соответственном увеличении промежуточных емкостей и к значительному увеличению продолжительности работы оборудования (термостата), поддерживающего заданную температуру раствора.
В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями:
- наличие мелких дендритных наростов;
- содержание серы составило 9 г/т серы;
- спиральное удлинение было равно 343 мм.
Удельный расход электроэнергии составил 324 кВт·ч/т Cu.
Результаты эксперимента, а именно снижение качества катодной меди по внешнему виду, снижение физико-механического показателя спирального удлинения и увеличение удельного расхода электроэнергии относительно примеров 4-6, подтверждают, что используемые в данном примере условия подготовки тиокарбамида не являются оптимальными.
Согласно полученным экспериментальным данным (опыты 4-6) предлагаемый способ по п.1 или п.2 приготовления электролита для электролитического рафинирования меди в присутствии комплекса поверхностно-активных веществ, в числе которых используют тиокарбамид, включающий его предварительную обработку сульфатным раствором меди, действительно является эффективным. Осуществление способа подготовки электролита для электролитического рафинирования меди по примерам 4-6 позволяет повысить качество катодной меди, уменьшить содержание серы в ней, улучшить показатель спирального удлинения, характеризующий пригодность катодной меди для производства катанки методом непрерывного литья и проката, и снизить на 18-57% удельный расход электроэнергии на производство катодной меди относительно прототипа (примеры 1-3). Представленные результаты экспериментов подтверждают, что выбранные границы для условий подготовки электролита в предлагаемых формулой пределах являются правильными.
При выходе значений параметров подготовки электролита за пределы заявленных диапазонов (опыты 7-13) основные технологические показатели ухудшаются, приближаясь к результатам, получаемым по способу-прототипу. Этим подтверждается, что выбранные границы для условий подготовки электролита в предлагаемых формулой пределах являются правильными.
Таким образом, технический результат, достигаемый использованием предлагаемого способа, заключается в следующем:
- в повышении качества катодной меди по внешнему виду, химическому составу и физико-механическим показателям, в частности по величине спирального удлинения, связанного со снижением содержания в ней серы;
- в снижении на 18-57% удельного расхода электроэнергии на производство катодной меди.
Таблица 1 | |||||||||||
Результаты лабораторных испытаний по электролитическому рафинированию меди | |||||||||||
Условия опытов: катодная плотность тока - 310 А/м2; температура электролита - 60-65°С; продолжительность каждого опыта - 94 ч; скорость циркуляции - 4 дм3/ч; состав электролита, г/дм3: меди - 50-55; никеля - 19-22; серной кислоты - 155-161; хлор-иона - 0,045-0,050. | |||||||||||
№ опыта | Дополнительное* ПАВ | Условия подготовки тиокарбамида в сульфатном растворе меди | Содержание серы в катодной меди, г/т | Спиральное удлинение, мм | Среднее напряжение на ванне, В | Выход по току, % | Удельный расход электроэнергии, кВт·ч/т | Характеристика катодных осадков по внешнему виду | |||
Наименование | Расход, г/ICu (г/дм 3) | Отношение Cu2+ /SCS(NH2)2 | Продолжительность, ч | Температура, °С | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
1 | ТАЖ*** | 85(2) | 10 | 368 | 0,39 | 98,0 | 336 | Наличие мелких округлых дендритных наростов | |||
2 | 200(5) | 12 | 351 | 0,43 | 97,8 | 371 | Мелкокристаллическая структура, незначительная бороздчатость | ||||
3** | 200 (5) | - | - | - | 14 | 339 | 0,51 | 96,7 | 445 | Тоже | |
4 | Тиокарбамид | 30(0,7) | 20 | 10 | 40 | 6 | 419 | 0,33 | 98,1 | 284 | Мелкокристаллическая структура, гладкая поверхность |
5 | 30 (0,7) | 600 | 70 | 70 | 5 | 424 | 0,35 | 98,3 | 300 | Тоже | |
6 | 30 (0,7) | 300 | 24 | 50 | 4 | 431 | 0,34 | 98,2 | 292 | " | |
7 | 30 (0,7) | 18 | 8 | 30 | 8 | 348 | 0,36 | 96,8 | 314 | Наличие мелких округлых наростов | |
8 | 30 (0,7) | 650 | 80 | 80 | 9 | 343 | 0,37 | 96,4 | 324 | Тоже | |
9 | 30 (0,7) | 18 | 80 | 80 | 18 | 305 | 0,40 | 95,4 | 354 | Наличие мелких округлых наростов | |
10 | 30 (0,7) | 18 | 8 | 60 | 16 | 350 | 0,38 | 95,8 | 334 | Наличие мелких округлых наростов | |
11 | 30 (0,7) | 18 | 10 | 30 | 11 | 328 | 0,36 | 96,0 | 316 | Наличие мелких округлых наростов, рыхловатая в верхней части | |
12 | 30 (0,7) | 650 | 80 | 60 | 5 | 422 | 0,35 | 97,8 | 302 | Мелкокристаллическая структура, гладкая поверхность | |
13 | 30 (0,7) | 650 | 24 | 80 | 11 | 338 | 0,37 | 96,9 | 322 | Мелкокристаллическая структура, наличие редких мелких округлых наростов | |
* - в качестве одного из (дополнительного) ПАВ вводили или тиокарбамид, или продукт конденсации тиокарбамида (тиомочевины) и аминоамидов жирных кислот (ТАЖ); | |||||||||||
** - в опыте использовали электролит рекомендуемого в прототипе состава, г/дм3 : меди - 50; никеля - 25; серной кислоты - 120. |
Используемые источники
1. Отчет по научно-исследовательской работе // Интенсификация и совершенствование процесса электрорафинирования меди на НГМК. Этап 1. Совершенствование и интенсификация процесса электрорафинирования меди на прямом токе / № гос. регистрации 79061613 / Москва - 1979 - с.31.
2. Технологическая инструкция производства электролитной меди ТИ 14.55-46-99. Срок введения 01.09.98 - с.48.
3. Патент ПНР, кл.40 с1 / 16, / С 22 D 1/16, №66979, заявл. 10.04.69, опубл. 31.03.73 г.
4. SU 907088 А (БУГАЕВА А.В. и др.), 23.02.1982.