смазка для обработки металлов давлением и способ ее получения
Классы МПК: | C10M169/04 смеси основ и добавок C10M105/24 имеющие только одну карбоксильную группу, связанную с ациклическим атомом углерода, циклоалифатическим атомом углерода или водородом C10M125/10 оксиды, гидроксиды, карбонаты или бикарбонаты металлов C10M177/00 Особые способы получения смазочных составов; химическая модификация путем последующей обработки компонентов или всего смазочного состава, не отнесенная к другим классам |
Автор(ы): | Тумбина Вера Павловна (RU), Лебошкин Борис Михайлович (RU), Проскурин Вячеслав Павлович (RU), Чинокалов Валерий Яковлевич (RU), Пронякин Александр Юрьевич (RU), Пелих Андрей Михайлович (RU), Ташлина Валентина Прохоровна (RU) |
Патентообладатель(и): | Открытое акционерное общество "Западно-Сибирский металлургический комбинат" (RU) |
Приоритеты: |
подача заявки:
2005-04-04 публикация патента:
20.08.2006 |
Использование: в области обработки металлов давлением, в частности для холодного волочения проволоки, и может найти применение на предприятиях металлургической промышленности. Сущность: смазка содержит, мас.%: аспирационную пыль извести 14-18, аспирационную пыль известняка 2-10 и мыло щелочного металла с влажностью 10-20 мас.% - остальное. Способ получения смазки включает смешение мыла щелочного металла с аспирационной пылью извести и аспирационной пылью известняка одновременно с термообработкой при температуре 170-180° и атмосферном давлении в течение 1,0-2,5 ч. Технический результат - утилизация промышленных отходов, получение дешевой технологической смазки для волочения с высокими антифрикционными и антикоррозионными свойствами. 2 н.п. ф-лы, 2 табл.
Формула изобретения
1. Смазка для обработки металлов давлением, содержащая мыло щелочного металла и известь, отличающаяся тем, что она содержит известь в виде аспирационной пыли, мыло щелочного металла с влажностью 10-20 мас.% и дополнительно содержит аспирационную пыль известняка при следующем соотношении компонентов, мас.%:
Аспирационная пыль извести | 14-18 |
Аспирационная пыль известняка | 2-10 |
Мыло щелочного металла с влажностью 10-20 мас.% | Остальное |
2. Способ получения смазки по п.1, включающий смешение мыла щелочного металла с известью и термообработку, отличающийся тем, что известь в виде аспирационной пыли смешивают с аспирационной пылью известняка и мылом щелочного металла с влажностью 10-20 мас.% с одновременной термообработкой смеси при температуре 170-180°С в течение 1,5-2,5 ч.
Описание изобретения к патенту
Изобретение относится к обработке металлов давлением, в частности к составам и способам получения сухой технологической смазки, используемой для холодного волочения проволоки, и может найти применение на предприятиях металлургической промышленности.
Известна смазка для обработки металлов давлением, состоящая из мыла и огнеупорной глины, причем указанные компоненты взяты в следующем соотношении, вес.%: мыло 60-80, глина 20-40; при этом использована обогащенная прокаленная глина, размельченная до фракции не более 0,1 мм. (авт. свид. СССР №603657, М.кл. 2 С 10 М 7/02, 1978).
Использование в составе данной смазки теплоизолирующего материала - обогащенной прокаленной глины с недостаточной теплостойкостью и низкой теплопроводностью, низким сродством с мылом - приводит к разложению и расслоению смазки на поверхности металла.
Наиболее близким к заявляемому техническому решению является смазка для обработки металлов давлением, которая содержит компоненты при следующем соотношении, мас.%: гидроксид кальция 20-60, порошкообразная окись железа 2-15, порошок алюмогеля 2-10 и мыльный порошок - до 100 (авт. свид. СССР №1122690, М.кл. 5 С 10 М 7/02, 7/10, 1982).
Недостатками известной смазки являются ее низкие антифрикционные и защитные свойства, например коррозионность смазки, обусловленная наличием в ее составе окиси железа, полученной при регенерации отработанных солянокислых растворов и содержащей примеси коррозионноактивных хлоридов железа.
Известен способ получения технологической смазки для обработки металлов давлением путем смешения порошков мыла щелочного металла с известью. Смазку получают путем смешения мыла, в частности мыла щелочного металла (например, натриевого мыла по РСТ УССР 496-72), с известью (ГОСТ 9179-70) в виде сыпучих материалов при атмосферном давлении и температуре окружающей среды (Кокрофт М.Г. Смазка и смазочные материалы. М., Металлургия, 1970, с.382).
При осуществлении данного способа получения смазка не проявляет достаточных антифрикционных свойств при тонком волочении низколегированных (типа св. 08Г2С) и низкоуглеродистых сталей.
Наиболее близким к заявляемому техническому решению является способ получения технологической смазки для обработки металлов давлением путем смешения порошков мыла щелочного металла с известью, полученную смесь подвергают термообработке при 70-90°С и давлении 0,1-0,5 ати в течение 0,5-1,0 ч с последующим нагреванием до 140-160°С в течение 1,5-2,0 ч (SU №924092, М.кл. 3 С 10 М 7/02, 7/10, 1982 г.).
Необходимость осуществления первой стадии термообработки при давлении 0,1-0,5 ати для предотвращения вспенивания смеси при гашении окиси кальция водой и взаимодействии гидроокиси кальция с мылом усложняет и удорожает технологию. Повышенная щелочность полученной смазки, обусловленная дополнительным выделением гидроксида натрия при образовании кальциевого мыла, приводит к щелочной коррозии металла после волочения.
Задачей изобретения является повышение антифрикционных, защитных (противокоррозионных) свойств смазки и создание экономичной технологии ее получения с низкой себестоимостью, утилизация отходов аспирационных систем.
Поставленная задача достигается тем, что известная смазка для обработки металлов давлением, содержащая мыло щелочного металла и известь, согласно изобретению содержит известь в виде аспирационной пыли, мыло щелочного металла с влажностью 10-20% и дополнительно содержит аспирационную пыль известняка при следующем соотношении компонентов, мас.%:
аспирационная пыль извести | 14-18 |
аспирационная пыль известняка | 2-10 |
мыло щелочного металла с влажностью 10-20 мас.% | остальное |
Поставленная задача достигается также тем, что в известном способе получения смазки, включающем смешение мыла щелочного металла с известью и термообработку полученной смеси, согласно изобретению известь в виде аспирационной пыли смешивают с аспирационной пылью известняка и мылом щелочного металла с влажностью 10-20% с одновременной термообработкой смеси при температуре 170-180°С в течение 1,5-2,5 ч.
Заявляемую смазку для обработки металлов давлением с предлагаемыми компонентами, взятыми в заданном соотношении и состоянии, можно получить именно заявляемым способом и решить поставленную задачу, что позволяет сделать вывод о едином изобретательском замысле заявляемых изобретений.
Технический результат, полученный при использовании предлагаемого состава смазки и заключающийся в получении высоких защитных (противокоррозионных) и антифрикционных свойств, достигается за счет ввода дополнительного компонента - аспирационной пыли известняка, использования аспирационной пыли извести и мыла щелочного металла с влажностью 10-20 мас.%.
Технический результат, полученный при использовании заявляемого способа получения смазки для обработки металлов давлением и заключающийся в утилизации отходов аспирационных систем производства обжига известняка, обеспечении низкой себестоимости смазки, достигается одновременным осуществлением смешения компонентов и термообработки смеси при температуре 170-180°С в течение 1,5-2,5 ч.
Химический состав аспирационной пыли извести, мас.%: СаО 90-92; MgO 2-5; примеси (Fe2O3+SiO2 +Al2O3) 5-6. Химический состав аспирационной пыли известняка, мас.%: СаСО3 97-98; MgCO3 0,4-0,6; примеси (Fe2О3+SiO2 +Al2О3) 1,5-2. Аспирационная пыль извести и известняка является отходом производства обжига известняка; пыль-унос содержит в 2-5 раз меньше примесей, чем известь по ГОСТ 9179-77, имеет дисперсность - 33% частиц размером 0,05 мм, не требует дополнительной подготовки этих компонентов перед смешиванием и способствует получению частиц смазки оптимального размера (1,11±0,89 мм).
В смеси, содержащей мыло, известь и известняк, при термообработке идут процессы замещения в мыле ионов натрия на ионы кальция и магния.
Состав полученной технологической смазки после термообработки - смесь мыл щелочного и щелочноземельных металлов, гидроксидов и карбонатов кальция и магния.
Термообработка смеси мыл и тугоплавких компонентов (гидроксидов и карбонатов кальция и магния) позволяет получить достаточные антифрикционные свойства смазки - необходимое условие при волочении проволоки.
Использование в составе технологической смазки нейтрального карбоната кальция (ингибитора коррозии) в составе известняка с температурой разложения более 900-1000°С позволяет повысить температуру начала размягчения смазки на 10-15°С и повысить коррозионную стойкость проволоки после волочения.
Использование в составе смазочной смеси для приготовления технологической смазки мыла щелочного металла с влажностью 10-20% и аспирационной пыли извести позволяет одновременно проводить процесс гашения извести и получения кальциевого мыла в стабильном режиме (без вспенивания) при 170-180°С и атмосферном давлении.
Исследованиями доказана целесообразность заявляемого соотношения компонентов смазки для обработки металлов давлением.
При содержании в смазочной смеси аспирационной пыли извести менее 14 мас.% не обеспечивается гидродинамический режим волочения проволоки, т.к. содержание компонентов мыльной основы в готовой смазке является недостаточным.
Повышение содержания в смазочной смеси аспирационной пыли извести более 18 мас.% не обеспечивает гидродинамический режим волочения проволоки, т.к. в готовой смазке снижается содержание тугоплавких компонентов.
При содержании в смазочной смеси аспирационной пыли известняка менее 2 мас.% снижаются антифрикционные свойства смазки.
Повышение содержания в смазочной смеси аспирационной пыли известняка более 10 мас.% нецелесообразно, т.к. антифрикционные свойства смазки остаются на прежнем уровне.
При снижении влажности мыла щелочного металла с влажностью 10-20 мас.% менее 10% требуется дополнительно добавлять воду для гашения остатка оксида кальция, что нежелательно.
Повышение влажности мыла щелочного металла с влажностью 10-20 мас.% более 20% нецелесообразно, т.к. увеличивается время высушивания готовой смазки.
Лабораторными и промышленными испытаниями установлено, что термообработка смеси ниже 170°С и атмосферном давлении не обеспечивает активацию компонентов смеси и полноту протекания реакции извести с мылом щелочного металла.
Термообработка смеси выше 180°С и атмосферном давлении нецелесообразна, т.к. происходит осмоление мыльной основы, что снижает эффективность смазки при волочении проволоки.
Время термообработки смеси менее 1,5 ч не обеспечивает полного взаимодействия компонентов смеси и равномерного их распределения по объему массы.
Продолжительность термообработки смеси более 2,5 ч нецелесообразна, т.к. гомогенное состояние технологической смазки более не изменяется.
Пример. Данные промышленных испытаний предлагаемых технических решений (примеры 1-5) и прототипа (пример 6) представлены в таблицах 1, 2. Заявляемая смазка для обработки металлов давлением была приготовлена, а способ ее получения осуществлен на установке сталепрокатного производства ОАО "Западно-Сибирский металлургический комбинат", представляющей собой лопастной смеситель, расположенный под углом к горизонтальной плоскости, с верхней загрузкой компонентов, куда загружали (пример 3) 183 кг (78 мас.% в пересчете на сухое) натриевого мыла по ГОСТ 30266-95 с влажностью 15 мас.%, 32 кг (16 мас.%) аспирационной пыли извести и 12 кг (6 мас.%) аспирационной пыли известняка, где смешение компонентов осуществляли одновременно с термообработкой при 175°С и атмосферном давлении в течение 2,5 ч.
При постоянном количестве загружаемой аспирационной пыли расчетное количество мыла (М) определяли по формуле М=15600/(100-W), где W - влажность мыла (%).
При выгрузке была получена технологическая смазка с оптимальными размерами частиц (1,11±0,89 мм) высокой степени сыпучести (угол естественного откоса 30°) в виде частиц чешуйчатой формы в количестве 220 кг.
Полученная технологическая смазка была испытана при волочении низкоуглеродистой и низколегированной проволоки на участках грубого и тонкого волочения (станы типа SKET) и на участке механической очистки (станы типа SKET 3/550, оборудованные установкой механической очистки катанки от окалины WCM-05).
В лаборатории условиях состав исходной смеси и полученной по предлагаемому способу смазки определяли путем растворения 1 г навески смазки в этиловом спирте при слабом нагревании, не растворившийся остаток отфильтровывали через предварительно взвешенный беззольный бумажный фильтр (a1, г), высушивали и взвешивали вместе с фильтром (а2, г). Остаток вместе с фильтром помещали в предварительно взвешенный платиновый тигель (а3, г), прокаливали в муфельной печи при 520°С, охлаждали и взвешивали вместе с тиглем (а4, г), затем тигель с остатком прокаливали при температуре 975°С и после охлаждения взвешивали (а5, г).
Массовую долю наполнителей в технологической смазке (X) в процентах определяли по формуле: Х=(a1-а2)·100, в том числе массовую долю гидратной извести (X1) в процентах определяли по формуле: X1=411,26·(а2-a1 +а3-а4), массовую долю карбоната кальция (Х2) в процентах определяли по формуле: X2 =227,43(а4-а5), а массовую долю примесей в наполнителях смазки (Х3) в процентах определяли по формуле: Х3=Х-X1-Х2. Здесь 411,26 - коэффициент пересчета Н2О в Са(ОН)2 , 227,43 - коэффициент пересчета CO2 в СаСО3 .
Антифрикционные свойства технологической смазки оценивали по эксплуатационной стойкости волочильного инструмента. Противокоррозионные свойства технологической смазки оценивали ускоренным способом в солевой камере по коррозионной стойкости образцов проволоки с остаточной смазкой до появления первых очагов коррозии.
Сравнительные результаты испытаний приведены в таблицах, где в таблице 1 отражены компонентные составы смесей (предлагаемых и прототипа) для приготовления технологической смазки, а в таблице 2 - достигнутые показатели эффективности испытанных смазок при различных способах их получения. Данные испытаний подтверждают, что при заявляемом соотношении компонентов предлагаемой смазки и предлагаемой последовательности приемов и параметров способа получения смазки, получены: высокие эксплуатационная стойкость волочильного инструмента и коррозионная стойкость проволоки, обеспечивающая временную (межоперационную) защиту проволоки от коррозии. Из данных таблицы 2 видно, что использование предлагаемого состава смазки и способа ее получения приводит к увеличению эксплуатационной стойкости волочильного инструмента в 4 раза и коррозионной стойкости проволоки в 5 раз по сравнению с прототипом.
При использовании заявляемых состава и соотношения компонентов смазки для холодного волочения проволоки, полученной заявляемым способом, достигнуты высокие защитные (противокоррозионные) и антифрикционные свойства смазки с оптимальными размерами частиц (1,11±0,89 мм), что необходимо для соблюдения условий захвата смазки проволокой при волочении. Использование пыли-уноса аспирационных систем производства обжига известняка решает вопрос утилизации отходов и значительно снижает себестоимость получения смазки. Технологическая смазка получена экономичным (с низкой себестоимостью) способом без применения давления.
Предлагаемый состав смазки для обработки металлов давлением и способ ее получения промышленно применим к смазкам для холодного волочения проволоки на предприятиях металлургической промышленности.
Таблица 1 | ||||||
Компоненты смазки, мас.% | Примеры | |||||
1 | 2 | 3 | 4 | 5 | 6 (прототип) | |
известь | - | - | - | - | - | 18 |
аспирационная пыль извести | 12 | 14 | 16 | 18 | 20 | - |
аспирационная пыль известняка | 1 | 2 | 6 | 10 | 12 | - |
мыло щелочного металла с влажностью 10-20 мас.% | до 100 | - | ||||
мыло щелочного металла | - | до 100 |
Таблица 2 | |||||||
Состав смазочной смеси, мас.% | Режим термообработки | Температура начала размягчения смазки, °С | Размер частиц смазки, мм | Протянуто проволоки, т | Количество израсходованных волок, шт | Эксплуатационная стойкость волочильного инструмента, т/шт | Коррозионная стойкость проволоки - время появления первого очага коррозии, сутки (солевая камера) |
Примеры: | |||||||
1 | 175°С, | 210 | 2,05±0,54 | 394,4 | 46 | 8,6 | 15 |
2 | 2,5 ч | 235 | 1,74±0,46 | 420,4 | 38 | 11,1 | 18 |
3 | 240 | 1,11±0,89 | 367,8 | 15 | 32,3 | 60 | |
4 | 245 | 0,90±0,22 | 614,5 | 19 | 24,5 | 30 | |
5 | 247 | 0,86±0,19 | 598,7 | 32 | 18,7 | 25 | |
6 (прототип) | I этап - 80°С, 0,3 ати, 0,8 ч, II этап - 150°С, 1,8 ч | 230 | 0,95±0,15 | 305,0 | 48 | 6,4 | 10 |
Класс C10M169/04 смеси основ и добавок
Класс C10M105/24 имеющие только одну карбоксильную группу, связанную с ациклическим атомом углерода, циклоалифатическим атомом углерода или водородом
Класс C10M125/10 оксиды, гидроксиды, карбонаты или бикарбонаты металлов
Класс C10M177/00 Особые способы получения смазочных составов; химическая модификация путем последующей обработки компонентов или всего смазочного состава, не отнесенная к другим классам