роторная гидромашина

Классы МПК:F01D1/38 винтового типа
F04D1/04 спирально-центробежные 
F03B5/00 Машины или двигатели с роторами, не снабженными лопатками, например зазубренными, использующими трение
B63H11/08 вращающегося типа 
Автор(ы):, , ,
Патентообладатель(и):Беклемишев Игорь Борисович (RU)
Приоритеты:
подача заявки:
2005-11-07
публикация патента:

Изобретение относится к машиностроению и может быть использовано для конструирования гидромашин для подачи жидкости потребителям в качестве гидромотора, гидродвижителя, а также в качестве турбины и активного эмульгатора. Роторная гидромашина содержит корпус с осевым входным и периферийным выходным патрубками и установленный на валу ротор в виде тела вращения с гидроканалами в виде многозаходных винтовых спиралей. Ротор выполнен в форме полусферы или усеченного конуса и содержит приемную камеру в узкой части ротора, от которой внутри объема ротора выполнены гидроканалы. Выходы гидроканалов расположены на периферии в широкой части ротора или на его торце. Гидроканалы выполнены с шагом от 0,5 до 1 высоты ротора вдоль его оси, а приемная камера выполнена в виде усеченного конуса. Изобретение направлено на расширение области применения, снижение потерь и обеспечение бескавитационной работы. 1 з.п. ф-лы, 1 ил. роторная гидромашина, патент № 2305191

роторная гидромашина, патент № 2305191

Формула изобретения

1. Роторная гидромашина, содержащая корпус с входным и периферийным выходным патрубками, установленный на валу ротор в виде тела вращения с гидроканалами в виде многозаходных винтовых спиралей, отличающаяся тем, что входной патрубок выполнен осевым, а ротор выполнен в форме полусферы или усеченного конуса и содержит приемную камеру в узкой части ротора, от которой внутри объема ротора выполнены гидроканалы, причем выходы гидроканалов расположены на периферии в широкой части ротора или на его торце.

2. Роторная гидромашина по п.1, отличающаяся тем, что гидроканалы выполнены с шагом от 0,5 до 1 высоты ротора вдоль его оси, а приемная камера выполнена в виде усеченного конуса.

Описание изобретения к патенту

Изобретение относится к машиностроению, в частности к насосостроению для подачи жидкости с рабочим органом в виде ротора, и может быть использовано для подачи жидкости потребителям в качестве гидромотора, гидродвижителя, а также в качестве турбины и активного эмульгатора.

Известен дисковый насос, содержащий корпус с центральным подводом и периферийным отводом жидкости, с рабочим органом в виде диска, на торцах которого выполнены радиальные канавки с торцевым зазором к корпусу насоса (SU №1038591, А1, F04D 5/00, 1992).

В известном насосе на поверхностях рабочего органа содержится определенное количество поворотов течения жидкости по каналам с острыми выступами, которые создают вихри в потоке жидкости и в соответствии с законами гидродинамики создают дополнительное сопротивление, для преодоления которого требуется затратить дополнительную энергию, что ведет к снижению КПД насоса.

Известна турбомашина, содержащая статор с аксиально-наклонными каналами, перемычками, впускные и выпускные патрубки, минимальное число которых не менее двух каждых. В статоре на подшипниках установлен ротор с глухими аксиально-наклоненными каналами в виде многозаходной резьбы. На внешних цилиндрических поверхностях статора и ротора снаружи каналы закрыты кожухами, которые неподвижно соединены со статором и ротором. Протекание сжатого газа по каналам осуществляется с поворотом вектора потока на 180°. (SU №1776818, F01D 1/38, А1, 1992).

Недостатки известной турбомашины схожи с недостатками аналога. Конструкция известной турбомашины допускает ударную волну у стенки перекрытия канала и ее диссипацию сил на границах ударной волны во всех направлениях и на долю силы для создания крутящего момента ротора остается менее половины усилия, приложенного к валу ротора. Сверхзвуковая скорость потока газа по каналам с острыми кромками, согласно законам аэрогидродинамики, создаст кавитирующие полости и значительное сопротивление не позволит беспрепятственно преодолеть щели зазора между вращающимся ротором и неподвижным статором. По этой причине получить высокий КПД турбомашины затруднительно, так как множество коротких каналов с острыми кромками течения газа создают турбулентные потоки и, даже если на входе в турбомашину этот поток был ламинарным, на кромках отверстий возникают вихри, тормозящие потоки жидкости, которые требуют дополнительных энергозатрат, следовательно, снижают КПД агрегата.

Кроме того, и аналог и прототип не обладают свойствами обратимой гидромашины и тем более не могут выполнять функции движителя объекта.

Задачей, на решение которой направлено изобретение, является создание рабочего органа гидромашины, обеспечивающего бескавитационный режим работы при окружных скоростях ротора свыше 100 м/с при пониженных гидравлических, объемных, внутренних и механических потерях.

Технический результат достигается тем, что в роторной гидромашине, содержащей корпус с входным и периферийным выходным патрубками, установленный на валу ротор в виде тела вращения с гидроканалами в виде многозаходных винтовых спиралей, согласно изобретению входной патрубок выполнен осевым, а ротор выполнен в форме полусферы или усеченного конуса и содержит приемную камеру в узкой части ротора, от которой внутри объема ротора выполнены гидроканалы, причем выходы гидроканалов расположены на периферии в широкой части ротора или на его торце.

Кроме того гидроканалы могут быть выполнены с шагом от 0,5 до 1 высоты ротора вдоль его оси, а приемная камера может быть выполнена в виде усеченного конуса.

На чертеже изображен частичный продольный разрез роторной гидромашины, разделенный на две половины: одна поясняет работу гидромашины как насоса и гидротурбины, а вторая половина поясняет возможность использования ротора гидромашины в качестве движителя объекта в водной среде, например, торпеды.

Роторная гидромашина содержит корпус 5 с входным и периферийным выходным патрубками 10, 12, установленный на валу 9 ротор 1 в виде тела вращения с гидроканалами 3 в виде многозаходных винтовых спиралей. Входной патрубок 10 выполнен осевым, а ротор 1 выполнен в форме полусферы или усеченного конуса и содержит приемную камеру 2 в узкой части ротора 1 по оси ротора. От камеры 2 внутри объема ротора 1 выполнены гидроканалы 3. Выходы гидроканалов 3 при использовании гидромашины в качестве насоса или гидротурбины расположены на периферии в широкой части ротора 1 (левая часть чертежа) или на его торце (правая часть чертежа) при использовании гидромашины в качестве движителя.

Кроме того, гидроканалы 3 могут быть выполнены с шагом от 0,5 до 1 высоты ротора 1 вдоль его оси, а приемная камера 2 может быть выполнена в виде усеченного конуса.

Гидроканалы 3 в роторе 1 выполнены в неограниченном количестве, но обязательно симметрично расположены вокруг оси ротора 1.

Гидроканалы 3 могут иметь различное сечение и форму, например круга с диметром до 3 мм, не более. Согласно законам гидродинамики каналы 3 следует выполнять трубчатыми с минимально возможным сечением и наименьшим числом изгибов. Такие гидроканалы обеспечивают бескавитационный режим работы при окружных скоростях ротора свыше 100 м/с при пониженных гидравлических, объемных, внутренних и механических потерях.

Если ротор 1 используется в насосе, то он располагается в корпусе 5 насоса, и выходное отверстие 6 каждого гидроканала 3 перемещается вдоль внутреннего периметра коллектора 11 с отверстиями и периферийно расположенным выходным патрубком 12 присоединенного к фланцу 7 привода насоса. В этом случае при вращении ротора 1 жидкость всасывается через входной осевой патрубок 10 и через приемную камеру 2 попадает в гидроканалы 3, где кинетическая энергия жидкости увеличивается при движении по гидроканалам 3 к выходному отверстию 6 вследствие увеличения радиуса расположения элементарного объема жидкости в гидроканале 3.

Если нагнетать жидкость через патрубок 10, то, попадая в приемную камеру 2 и далее в винтовые спиральные гидроканалы 3, жидкость, воздействуя на стенки гидроканалов 3, обеспечит вращение ротора 1 в качестве ротора гидротурбины и через вал 9 передаст крутящий момент на исполнительный объект.

Если ротор 1 используется как движитель объекта 8, то выход 4 каждого гидроканала 3 располагается на торце ротора 1 и струя потока направлена вдоль поверхности объекта 8 под некоторым углом к вектору движения объекта 8. Напор струи будет определяться в основном оборотами ротора 1 от вала 9 привода и условиями течения жидкости по каналам 3.

В режиме движителя предполагается размещение гидромашины как на корме, так и на носу торпеды, но в любом случае размеры последней и величины диаметров миделевого сечения или форму ротора 1 следует выбирать сообразными. При размещении ротора 1 в носовой части объекта 8 целесообразно выполнять его без оболочек и конусов, что позволяет обеспечить наименьшее лобовое сопротивление. В этом случае при входе в гидроканал 3 из приемной камеры 2 у потока нет скорости по направлению движения жидкости в начале гидроканала 3, и поток симметрично распределяется между входами гидроканалов 3 с подпором лобового давления, что снижает вероятность появления срыва потока и переход от ламинарного к турбулентному характеру движения жидкости.

Разница физических процессов в гидроканалах 3 заключается в том, что в режиме насоса и в режиме движителя стенки гидроканалов 3 воздействуют на жидкость, придавая кинетическую энергию жидкости, а в режиме гидротурбины жидкость воздействует на стенки гидроканалов 3, создавая крутящий момент на валу 9.

На основании анализа конструкций роторов гидромашин с различными типами винтовой спирали гидроканалов 3 (архимедова, логарифмическая и др.), разными шагами спирали и частотами вращения ротора был выполнен макетный образец насоса с ротором 1 в виде полусферы с двумя спирально-винтовыми гидроканалами 3 с началом каналов в приемной камере 2 и окончанием 6 на периферии ротора 1 с диаметром 22 мм в широкой части и диаметром 4 мм в узкой его части. Гидроканалы 3 выполнены из трубки диаметром 3 мм с закруткой по спирали на 360°.

При испытаниях насос показал манометрический напор 20 м и расход 90 мл/с при ограничении площади сечения выхода жидкости с 207 мм 2 до 40 мм2. При частоте вращения ротора 1 в 20 тыс. об/мин наблюдалось бескавитационное течение жидкости и при окружной скорости 23 м/с критическая скорость не определена.

Здесь проявился солитонный характер движения струй жидкости в капиллярных гидроканалах (dу <3 мм), который позволяет получить бескавитационный характер движения жидкости в гидроканалах с меньшими потерями при высокой быстроходности ротора.

Если выбрать расположение выходных отверстий 6 гидроканалов 3 на торце ротора 1 на диаметре 300 мм и пересчитать все характеристики движителя по методу подобия, то можно получить окружную скорость примерно 314 м/с при бескавитационном течении жидкости при расходе более 141,3 л/с.

Увеличение быстроходности ротора движителя снимает проблему установки редуктора между приводом и движителем, основной причины снижения КПД машины.

Таким образом, разработанная, изготовленная в макетном образце и испытанная конструкция роторной гидромашины позволяет использовать ее многофункционально:

- в качестве насоса для подачи жидкости;

- в качестве привода гидротурбины;

- в качестве быстроходного реактивного движителя для объектов, движущихся в воде, например торпед различного класса.

- в качестве насоса-эмульгатора.

Класс F01D1/38 винтового типа

пароводяной винтовой детандер -  патент 2432465 (27.10.2011)
осевая объемная машина, газотурбинный двигатель, а также авиационный газотурбинный двигатель (варианты) -  патент 2418955 (20.05.2011)
авиационная осевая двухсторонняя турбомашина (варианты) -  патент 2305192 (27.08.2007)
паровая винтовая машина и способ преобразования тепловой энергии в механическую -  патент 2118460 (27.08.1998)

Класс F04D1/04 спирально-центробежные 

Класс F03B5/00 Машины или двигатели с роторами, не снабженными лопатками, например зазубренными, использующими трение

Класс B63H11/08 вращающегося типа 

Наверх