способ очистки отработанной воды от ионов тяжелых металлов в производстве баллиститного пороха

Классы МПК:C02F1/62 соединения тяжелых металлов
Автор(ы):, , , , , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов" (RU),
Федеральное казенное предприятие "Пермский пороховой завод" (RU)
Приоритеты:
подача заявки:
2007-06-05
публикация патента:

Изобретение относится к области очистки отработанной производственной воды и защиты окружающей среды. Отработанную воду производства баллиститного пороха, загрязненную ионами тяжелых металлов, обрабатывают карбонатом натрия при рН 9-10, добавляют полиакриламид, нагревают паром в течение 25-35 минут. Образовавшиеся нерастворимые карбонаты тяжелых металлов отфильтровывают и осветленную воду пропускают через адсорбер, заполненный по секциям древесной стружкой, активированным углем, ионообменными смолами. Затем очищенную воду сбрасывают на очистные сооружения. В предпочтительном варианте осуществления способа в обрабатываемую воду добавляют 1%-ный раствор полиакриламида в количестве 0,015-0,030%. В качестве ионообменных смол используют катионит КУ-2-8 и анионит АН-31, а в качестве активированного угля используют уголь марок БАУ и АГ-3. Способ обеспечивает практически полную очистку отработанной производственной воды и безотходную, экологически чистую технологию. Осадок в целях защиты окружающей среды прожигают и вводят в цементно-гравийные смеси при ремонте дорог, полов и различных не несущих нагрузки конструкций. 3 з.п. ф-лы, 2 ил., 3 табл. способ очистки отработанной воды от ионов тяжелых металлов в   производстве баллиститного пороха, патент № 2339584

способ очистки отработанной воды от ионов тяжелых металлов в   производстве баллиститного пороха, патент № 2339584 способ очистки отработанной воды от ионов тяжелых металлов в   производстве баллиститного пороха, патент № 2339584

Формула изобретения

1. Способ очистки отработанной воды от ионов тяжелых металлов в производстве баллиститного пороха, заключающийся в том, что отработанную производственную воду обрабатывают карбонатом натрия до рН 9-10, добавляют полиакриламид, нагревают паром в течение 25-35 мин, отфильтровывают от образовавшихся нерастворимых карбонатов тяжелых металлов и осветленную воду пропускают через адсорбер, заполненный по секциям древесной стружкой, активированным углем, ионообменными смолами, после чего очищенную воду сбрасывают на очистные сооружения.

2. Способ по п.1, отличающийся тем, что в обрабатываемую воду добавляют 1%-ный раствор полиакриламида в количестве 0,015-0,030%.

3. Способ по п.1, отличающийся тем, что в качестве ионообменных смол используют катионит КУ-2-8 и анионит АН-31.

4. Способ по п.1, отличающийся тем, что в качестве активированного угля используют уголь марок БАУ и АГ-3.

Описание изобретения к патенту

Изобретение относится к области очистки отработанной производственной воды и защиты окружающей среды от промышленных выбросов.

Способ предназначен для очистки отработанной производственной воды от ионов тяжелых металлов в производстве баллиститного пороха.

В литературе приводится значительное количество публикаций по способам очистки производственной воды от тяжелых металлов в различных промышленных областях. Применяются методы реагентной обработки - «Способ очистки сточных вод от соединений тяжелых металлов» SU 1386584 А1 (Челябинский филиал ВОДГЕО), опубликованный 07.04.88 - обработка неорганическим коагулянтом в щелочной среде. В качестве неорганического коагулянта используют сточные воды гальванического производства, содержащие водорастворимые соли Fe, Zn, Cu и Ni с последующим введением полиакриламида. Указанные методы экономически невыгодны и требуют применения сложного в изготовлении и обслуживании оборудования.

РЖ Химия №6, 2006, 19H380-D1 (Separ and Purif. Technol, 2004, 39, №3, с.181-188) «Удаление никеля из сточных вод гальванических производств комбинацией ионного обмена и осаждения». Результаты проведенных опытов показали, что применение ионного обмена позволяет удалить 74,8% никеля из сточных вод. Добавление стадии осаждения позволяет удалить 94,2-98,3%. Последовательными стадиями являются установление рН 10,5, ионный обмен с использованием клиноптилолита, осаждение в течение 2-х часов. Недостатком данного способа является недостаточная эффективность очистки и использование дефицитного клиноптилолита, а также то, что процесс является периодичным. Недостатком следует считать и то, что осадок не выводится из технологического процесса, что приводит к снижению поглотительной способности клиноптилолита, и остается открытым вопрос о его дальнейшем использовании или сбросе осадка в окружающую среду.

Задачей данного изобретения является создание более эффективного, безотходного, экологически чистого способа очистки отработанной производственной воды от ионов тяжелых металлов в производстве баллиститного пороха.

Поставленная задача достигается за счет организации двухстадийного технологического процесса:

- отработанную производственную воду обрабатывают в присутствии полиакриламида при нагревании карбонатом натрия до рН 9-10 с целью получения нерастворимых карбонатов тяжелых металлов и отфильтровывают;

- осветленную воду пропускают через адсорбер, заполненный по секциям древесной стружкой, активированным углем, ионообменными смолами и направляют на очистные сооружения.

Отфильтрованный осадок прожигают в печах и утилизируют в цементно-гравийных смесях при ремонте полов в промышленных зданиях, дорог на территории предприятия и других не несущих нагрузки конструкциях, что исключает попадание его в окружающую среду.

На фиг.1 приведена «Принципиальная технологическая схема отработанной воды в производстве баллиститного пороха». Отработанную воду, загрязненную тяжелыми металлами, подают в бак-нейтрализатор (1), туда же подают карбонат натрия (кальцинированную соду) для связывания ионов тяжелых металлов в нерастворимые карбонаты и 1%-ный раствор полиакриламида в колиичестве 0,015-0,030% для ускорения осаждения осадка. Смесь подогревают с помощью подачи острого пара в бак в течение 25-35 минут. После этого раствор отстаивают, осветленную верхнюю часть насосом (2) подают в адсорбер (3). Вода, проходя через адсорбер, очищается от механических примесей (секция а, заполнение древесной стружкой), возможных остатков органических веществ (секция б, заполнение углем БАУ и АГ-3), остатков катионов растворимых солей и тяжелых металлов (секции в, г, заполнение катионитом КУ-2-8), остатков анионов растворенных солей тяжелых металлов (секция д, е, заполнение анионитом АН-31). Суспензию карбонатов тяжелых металлов из нижней части бака-нейтрализатора этим же насосом подают на нутч-фильтр (4), фильтрат с помощью вакуум-насоса (5) собирают в сборнике (6) и направляют в адсорбер (3). Осадок периодически выгружают в тару и направляют на прожигание от остатков нитроцеллюлозы на установку уничтожения спецтехнологических отходов (7) или любую другую печь. Полученный прожженный осадок отправляют на бетономешалку (8) для ввода в цементно-гравийные смеси.

Примеры результатов экспериментальной проверки в опытных условиях приведены в таблицах 1, 2.

Таблица 1
Результаты очистки отработанной воды от тяжелых металлов с применением соды и 1% ПАА
Условия очистки Доза реагента 1%-ный р-р ПАА, % Концентрация тяжелых металлов в воде, мг/л Эффективность очистки,
   До очистки После очистки%
123 45
1. Обработка содой и ПАА рН 10,270,010 4,022,5864,2
2. Обработка содой и ПАА рН 10,27 0,0256,56 0,395,4
3. Обработка содой и ПАА рН 10,270,050 6,561,63 75,16

Из табл.1 следует, что оптимальный эффект очистки 95,4% достигается при рН 10,27 и расходе 1% ПАА 0,025%, при этом концентрация тяжелых металлов в очищаемой воде уменьшается с 6,56 до 0,3 мг/л. Исходя из полученных результатов, необходимо в обрабатываемую воду добавлять 1% раствор полиакриламида в количестве 0,015-0,030%.

Таблица 2
Данные по очистке отработанной воды от Cu и Pb, образующейся при изготовлении полуфабрикатов
Метод обработки отработанной воды Концентрация в воде, мг/лЭффект очистки, %
До очистки После очистки Pb2+Cu 2+
Pb2+ Cu2+ Pb2+Cu 2+
1 234 567
1. Исходная отработанная вода рН 4 после кипячения с содой до рН 6,322400 542,610,985,9 99,5584
2. Вода после обработки содой до рН 9,97 10,985,92,5 12,277,0685,79
3. Вода после обработки содой рН 10,0 10,985,9 4,57,358,71 91,5
4. Вода после обработки 1% ПАА и Na2CO3 при pH 10,0, t=30°C2400 542,623107,14 99,880,43
5. Доочистка на КУ-2-8 3107,14н/о 0,1210099,8
6. Доочистка на АН-31 30,12н/о н/о100100

Из табл.2 следует, что на первой стадии очистки - только обработкой карбонатом натрия - не удается получить стабильных результатов и требуемой эффективности. На второй стадии - прохождение воды через ионообменные смолы - достигается полное извлечение остатков ионов растворимых солей тяжелых металлов. Применение двухстадийной очистки позволяет значительно повысить эффективность очистки и увеличить срок службы ионообменных смол в адсорбере.

Таблица 3
Результаты испытания образцов «строительных» материалов
№ п/п Состав, % (г)Вода, мл Способ ввода осадкаПредел прочности, кг/см2
Цемент Речной песокОсадок, сверх 100%
12 34 567
167,39 32,61025 Контрольный; смесь цемента и песка смешана с водой и отверждалась в течение 5 суток в специальных формах109
267,39 32,610,325 В смесь цемента и песка вводился прожженный осадок, смесь перемешивалась, затем в полученную смесь вводилась вода. Отверждение проводилось в течение 5 суток в специальных формах с получением образцов d=15 мм и h=20 мм106
367,3932,61 2,02570,5
467,39 32,613,525 15,9

В таблице 3 и на фигуре 2 представлена зависимость предела прочности строительных материалов от содержания прожженного осадка, откуда видно, что количество вводимого прожженного осадка должно быть в пределах 0,1-0,5%, что не сказывается существенно на прочностных характеристиках строительных материалов. Однако целесообразно осадок применять в не несущих нагрузки конструкциях. Это диктуется требованиями защиты окружающей среды: осадок не сбрасывается на почву, а закрывается в нерастворимых бетонных материалах.

Класс C02F1/62 соединения тяжелых металлов

устройство для очистки природных и сточных вод от механических примесей -  патент 2525905 (20.08.2014)
способ очистки гальваностоков от ионов тяжелых металлов -  патент 2525902 (20.08.2014)
способ извлечения ионов тяжелых металлов -  патент 2525307 (10.08.2014)
способ очистки техногенных вод -  патент 2522630 (20.07.2014)
способ получения реагента для очистки промышленных вод на основе торфа -  патент 2509060 (10.03.2014)
реагент для очистки солянокислых растворов от ионов меди -  патент 2507160 (20.02.2014)
способ очистки сточных вод от катионов тяжелых металлов -  патент 2504518 (20.01.2014)
способ обезжелезивания минеральных питьевых вод, разливаемых в бутылки -  патент 2503626 (10.01.2014)
способ извлечения серебра из сточных вод и технологических растворов -  патент 2497760 (10.11.2013)
способ очистки промышленных сточных вод от тяжелых металлов -  патент 2497759 (10.11.2013)
Наверх