способ и устройство для получения кремния

Классы МПК:C01B33/02 кремний
B01J19/24 стационарные реакторы без подвижных элементов внутри
Автор(ы):, , ,
Патентообладатель(и):Орлова Екатерина Андреевна (RU),
Алексеев Виктор Васильевич (RU),
Сорокин Александр Павлович (RU),
Орлов Михаил Андреевич (RU)
Приоритеты:
подача заявки:
2008-10-13
публикация патента:

Изобретение может быть использовано в химической промышленности. Устройство для получения кремния состоит из корпуса 5, внутри которого размещен контейнер 4 с кремнефторидом натрия 3. Стенка, днище и/или крышка контейнера 4 выполнены пористыми. Обеспечивают контакт кремнефторида натрия 3 с натрием 6 через пористую стенку контейнера 4, содержащего кремнефторид натрия 3. Температуру кремнефторида натрия 3 обеспечивают ниже температуры его плавления. Процесс выделения кремния осуществляют путем его пропускания через ячейки стенки контейнера 4, площадь которых составляет 0,012-0,13 мм2. Максимальную площадь ячейки контейнера 4 обеспечивают меньше минимальной площади гранул исходного реагента. Пористость стенки, днища и/или крышки контейнера 4 обеспечивают в соответствии с соотношением: 0,17<способ и устройство для получения кремния, патент № 2400424 <1, где способ и устройство для получения кремния, патент № 2400424 - пористость стенки, днища и/или крышки контейнера. 2 н. и 1 з.п. ф-лы, 2 ил. способ и устройство для получения кремния, патент № 2400424

способ и устройство для получения кремния, патент № 2400424 способ и устройство для получения кремния, патент № 2400424

Формула изобретения

1. Способ получения кремния, включающий обеспечение контакта кремнефторида натрия (Na2SiF6) с натрием через пористую стенку контейнера, содержащего кремнефторид натрия, и осуществление химической реакции кремнефторида натрия с натрием, отличающийся тем, что температуру кремнефторида натрия обеспечивают ниже температуры его плавления, а процесс выделения кремния осуществляют путем его пропускания через ячейки стенки контейнера, площадь которых соответствует значениям от 0,012 до 0,13 мм2 .

2. Устройство для получения кремния, состоящее из корпуса, внутри которого размещен контейнер с кремнефторидом натрия, причем стенка, днище и/или крышка контейнера выполнены пористыми, между корпусом и контейнером расположен натрий, отличающееся тем, что площадь ячейки стенки контейнера выбирают в пределах от 0,012 до 0,13 мм2, при этом максимальную площадь ячейки контейнера обеспечивают меньше минимальной площади гранул исходного реагента, а пористость стенки, днища и/или крышки контейнера обеспечивают в соответствии с соотношением

0,17<способ и устройство для получения кремния, патент № 2400424 <1, где

способ и устройство для получения кремния, патент № 2400424 - пористость стенки, днища и/или крышки контейнера.

3. Устройство по п.2, отличающееся тем, что контейнер усилен арматурой, выполненной из верхнего и нижнего металлических колец с внутренним диаметром 20 мм и толщиной 5 мм, соединенных между собой прутками с диаметром 3 мм, расположенными вдоль наружной поверхности контейнера.

Описание изобретения к патенту

Изобретение относится к химической промышленности и может быть использовано при производстве химических элементов и веществ.

Известен способ получения кремния из кремнефторидных соединений натрия и калия [Патент на изобретение США № 4442082 «Process for obtaining silicon from fluosilicic acid», МПК С01В 33/02. Дата подачи заявки 27.12.1982. Зарегистрирован 10.04.1984].

Известный способ заключается в термическом разложении кремнефторида с выделением тетрафторида кремния, который далее восстанавливается до элементарного кремния.

Недостатком известного способа является отсутствие рекомендаций по выбору оптимальных режимных характеристик процесса получения кремния.

Наиболее близким по технической сущности к заявляемому способу является способ выделения кремния [Патент на изобретение РФ № 2181104 под названием «Способ выделения кремния», МПК8 С01В 33/033. Дата подачи заявки 03.02.2000. Зарегистрирован 10.04.2002].

Способ выделения кремния включает восстановление кремнефторида щелочного металла с использованием металлов-восстановителей, например щелочных металлов, при температуре выше температуры плавления металла-восстановителя не менее чем на 50К, но ниже его температуры кипения, и осаждение кремния на подложку при температуре не менее чем на 10К ниже температуры расплава, но выше температуры плавления химически активного металла-восстановителя.

Недостатком известного способа также является отсутствие рекомендаций по выбору оптимальных режимных характеристик процесса получения кремния.

Предложенный способ позволяет исключить указанный недостаток, а именно, обеспечить оптимальные режимные характеристики процесса получения кремния.

Технический результат предложенного способа состоит в расширении его функциональных возможностей.

Для исключения указанного недостатка в способ получения кремния, включающий обеспечение контакта кремнефторида натрия (Na2SiF 6) с расплавленным натрием (Na) через пористую стенку контейнера, содержащего расплавленный кремнефторид натрия, и осуществление химической реакции кремнефторида натрия с расплавленным натрием, предлагается:

- температуру кремнефторида натрия обеспечивать ниже температуры его плавления;

- процесс выделения кремния осуществлять путем его пропускания через ячейки стенки контейнера, площадь которых соответствует значениям от 0,012 до 0,13 мм2.

Способ получения кремния включает обеспечение контакта кремнефторида натрия (Na2SiF6) 3 через пористую стенку контейнера 4 с расплавленным натрием (Na) 6 и осуществление химической реакции кремнефторида натрия 3 с расплавленным натрием 6.

Температуру кремнефторида натрия 3 обеспечивают ниже температуры его плавления, а процесс выделения кремния осуществляют путем его пропускания через ячейки стенки контейнера 4, площадь которых соответствует значениям от 0,012 до 0,13 мм2 .

В результате экспериментальных исследований выбраны оптимальные размеры ячеек стенок контейнера 4, при которых плотность потока кремния имеет максимальное значение.

Пример конкретного осуществления способа

Насыпная плотность Na2SiF6 составляет 1,5 г/см 2, плотность литого Na2SiF6 - 2,5 г/см2, минимальный размер гранул Na2SiF 6 - 0,2 мм2. Кремнефторид натрия 3 в количестве 4,9 г помещают в контейнер 4 при температуре 293К, затем контейнер 4 погружают в расплавленный натрий 6. По окончании испытаний в контейнере 4 рентгеноструктурным анализом идентифицированы NaF и Na, т.е. с точностью до 3% исходный Na2SiF 6 был модифицирован в NaF. Прореагировало 4,9 г Na 2SiF6.

Расплавленный натрий 6 очищают от примесей методом отстаивания в емкости при температуре 376К. Чистота использованного расплавленного натрия составляет 99,95%, а содержание кислорода в нем - 10 мг/кг. Полость корпуса 5 вакуумируют через газовакуумную линию 2 до разрежения менее 0,01 МПа и подают в нее аргон под давлением 0,1 МПа с содержанием кислорода менее 10 мг/кг и азота менее 80 мг/кг. Проводят разогрев натрия 6 и кремнефторида натрия 3 до температуры 434-503К и обеспечивают их химическое взаимодействие в течение 70 часов. Масса расплавленного натрия 6 составляет 240 г.

Контейнер 4 выполнен из стали 10Х18Н10Т. Диаметр и высота пористой боковой стенки контейнера 4 равны соответственно 20 мм и 25 мм. В качестве боковой стенки контейнера 4 использована сетка со следующими характеристиками: площадь ячейки равна 0,12 мм2, толщина утка и основы соответственно равны 0,12 мм и 0,18 мм. Общая площадь наружной поверхности контейнера 4 равна 1570 мм2, а суммарная площадь контакта Na2SiF6 3 с расплавленным натрием 6 равна 900 мм2.

Днище контейнера 4 имеет диаметр 20 мм. Крышка контейнера 4 отсутствует. Объем контейнера 4 составляет 7850 мм3. Пористость боковой стенки и днища контейнера 4 равна 0,48.

На фиг.1 представлена зависимость плотности потока кремния от площади ячейки контейнера, полученная на установке в соответствии с указанными ранее режимом и условиями ее работы. Зависимость позволяет определить оптимальные размеры ячейки стенки контейнера 4. Оптимальная площадь ячейки сетки контейнера 4 находится в пределах от 0,012 до 0,13 мм2, а соответствующая ей плотность потока кремния (J) равна 1,88·10-12 г/(мм2c). Максимальная плотность потока кремния (J0) равна 7,09·10 -12 г/(мм2c) при площади ячейки сетки контейнера 4, равной 0,04 мм2.

Известно устройство для получения кремния из кремнефторидных соединений натрия и калия [Патент на изобретение США № 4442082 «Process for obtaining silicon from fluosilicic acid», кл. МПК С01В 33/02. Дата подачи заявки 27.12.1982. Зарегистрирован 10.04.1984].

Известное устройство состоит из внешнего и внутреннего корпусов, исходного реагента H2SiF6, капель щелочного металла с температурой на входе 523К, реагента SiF4 под давлением от 0,5 до 5 атм. Быстрая реакция протекает при температуре от 433 до 1673К.

Недостатком известного устройства является отсутствие рекомендаций по выбору конструкции, обеспечивающей оптимальные режимные характеристики процесса получения кремния.

Наиболее близким по технической сущности к заявляемому устройству является устройство выделения кремния [Патент на изобретение РФ № 2181104 под названием «Способ выделения кремния», МПК8 С01В 33/033. Приоритет от 03.02.2000. Зарегистрирован 10.04.2002].

Устройство состоит из корпуса, внутри которого установлен контейнер с исходным реагентом в виде кремнефторида натрия (Na2SiF6). Кольцевой зазор между контейнером и корпусом заполнен натрием.

Недостатком известного устройства является отсутствие рекомендаций по выбору конструкции, обеспечивающей оптимальные режимные характеристики процесса получения кремния.

Предложенное техническое решение позволяет исключить указанный недостаток, а именно, обеспечить оптимальные режимные характеристики процесса получения кремния.

Технический результат предложенного технического решения состоит в расширении его функциональных возможностей.

Для исключения указанного недостатка в устройстве для получения кремния, состоящем из корпуса, внутри которого размещен контейнер с кремнефторидом натрия, причем стенка, днище и (или) крышка контейнера выполнены пористыми, между корпусом и контейнером расположен натрий, предлагается:

- площадь ячейки стенки контейнера выбирать в пределах от 0,012 до 0,13 мм2;

- максимальную площадь ячейки контейнера обеспечивать меньше минимальной площади гранул кремнефторида натрия;

- пористость стенки, днища и (или) крышки контейнера обеспечивать в соответствии с соотношением:

способ и устройство для получения кремния, патент № 2400424

где способ и устройство для получения кремния, патент № 2400424 - пористость стенки, днища и (или) крышки контейнера.

В частном случае выполнения устройства предлагается контейнер усилить арматурой, выполненной из верхнего и нижнего металлических колец с внутренним диаметром 20 мм и толщиной 5 мм, соединенных между собой прутками с диаметром 3 мм, расположенными вдоль наружной поверхности контейнера.

Принципиальная схема устройства интенсификации массопереноса представлена на фигуре 2. На фигуре приняты следующие обозначения: 1 - арматура; 2 - газо-вакуумная линия; 3 - кремнефтород натрия; 4 - контейнер для загрузки кремнефторида натрия; 5 - корпус; 6 - расплавленный натрий.

Устройство для получения кремния состоит из корпуса, внутри которого размещен контейнер 4 с кремнефторидом натрия 3.

Стенка, днище и (или) крышка контейнера 4 выполнены пористыми.

Между корпусом 1 и контейнером 4 расположен расплавленный натрий 6.

Площадь ячейки стенки контейнера 4 выбрана в пределах от 0,012 до 0,13 мм 2.

Максимальная площадь ячейки контейнера 4 меньше минимальной площади гранул кремнефторида натрия 3.

Пористость стенки, днища и (или) крышки контейнера 4 выполнена в соответствии с соотношением:

способ и устройство для получения кремния, патент № 2400424

где способ и устройство для получения кремния, патент № 2400424 - пористость стенки, днища и (или) крышки контейнера.

В частном случае выполнения устройства контейнер усилен арматурой 1.

Арматура 1 выполнена из верхнего и нижнего металлических колец с внутренним диаметром 20 мм и толщиной 5 мм, соединенных между собой прутками с диаметром 3 мм, расположенными вдоль наружной поверхности контейнера.

Пример конкретного исполнения устройства

Устройство выполнено следующим образом.

Кремнефторид натрия (Na2SiF6) 3 рентгеноструктурным анализом был идентифицирован, как вещество с высокой стехиометрией. Насыпная плотность Na2SiF6 составляет 1,5 г/см2, плотность литого Na2SiF6 - 2,5 г/см2, минимальный размер гранул Na2 SiF6 - 0,2 мм2. Масса кремнефторида натрия 3 в контейнере 4 составляет 4,9 г, а масса расплавленного натрия между корпусом 5 и контейнером 4 - 240 г.

Контейнер 4 выполнен из стали 10Х18Н10Т. Диаметр и высота пористой боковой стенки контейнера 4 равны соответственно 20 мм и 25 мм. В качестве боковой стенки контейнера 4 использована сетка со следующими характеристиками: площадь ячейки равна 0,12 мм2, толщина утка и основы соответственно равны 0,12 мм и 0,18 мм. Общая площадь наружной поверхности контейнера 4 равна 1570 мм2, а суммарная площадь контакта Na2SiF6 с расплавленным натрием 6 равна 900 мм2.

Днище контейнера 4 имеет диаметр 20 мм. Крышка контейнера 4 отсутствует. Объем контейнера 4 составляет 7850 мм3. Пористость боковой стенки и днища контейнера 4 равна 0,48. Оптимальная площадь ячейки сетки равна 0,12 мм2 (находится в пределах от 0,012 до 0,13 мм2). При этом плотность потока кремния (J) равна 1,88·10-12 г/(мм2с), а максимальная плотность потока кремния (J0) равна 7,09·10 -12 г/(мм2с).

Корпус 5 устройства выполнен из стали 10Х18Н10Т и имеет внутренний диаметр и высоту, соответственно равные 70 мм и 800 мм.

Расплавленный натрий 6 очищен от примесей методом отстаивания в емкости при температуре 376К. Чистота использованного натрия составляла 99,95%. Содержание кислорода в натрии составляло около 10 мг/кг.

Температура расплавленного натрия 6 в кольцевом зазоре между корпусом 5 и контейнером 4 составляет 434-503К.

Стенка контейнера 4 усилена арматурой 1 в виде верхнего и нижнего металлических колец с внутренними диаметрами по 20 мм, толщиной - по 5 мм, соединенных между собой прутками диаметром 3 мм, расположенными вдоль наружной поверхности контейнера 4.

Класс C01B33/02 кремний

способ получения полупроводниковых наночастиц, заканчивающихся стабильным кислородом -  патент 2513179 (20.04.2014)
способ получения материала, содержащего фуллерен и кремний -  патент 2509721 (20.03.2014)
способ получения гранул кремния высокой чистоты -  патент 2477684 (20.03.2013)
способ получения нанокристаллического кремния -  патент 2471709 (10.01.2013)
способ десорбции кремния с анионитов -  патент 2456237 (20.07.2012)
способ и устройство для получения энергии -  патент 2451057 (20.05.2012)
способ десорбции кремния с анионитов -  патент 2448042 (20.04.2012)
способ получения кремния -  патент 2441838 (10.02.2012)
способ увеличения светостойкости лакокрасочных покрытий и защитных составов -  патент 2441046 (27.01.2012)
способ сплавления порошка кремния -  патент 2429196 (20.09.2011)

Класс B01J19/24 стационарные реакторы без подвижных элементов внутри

способ синтеза метанола -  патент 2519940 (20.06.2014)
полимеризация этилена в реакторе высокого давления с улучшенной подачей инициатора -  патент 2518962 (10.06.2014)
улучшенный способ получения синильной кислоты путем каталитической дегидратации газообразного формамида при прямом нагревании -  патент 2510364 (27.03.2014)
способ получения алкиленкарбоната и/или алкиленгликоля -  патент 2506124 (10.02.2014)
способ получения алкиленкарбоната и алкиленгликоля -  патент 2506123 (10.02.2014)
способ и установка для получения простого диметилового эфира из метанола -  патент 2505522 (27.01.2014)
аппарат для осуществления способа получения раствора диоксида хлора и хлора в воде -  патент 2503614 (10.01.2014)
способ очистки метакриловой кислоты -  патент 2501783 (20.12.2013)
улучшенный способ получения синильной кислоты посредством каталитической дегидратации газообразного формамида -  патент 2498940 (20.11.2013)
каталитический реактор -  патент 2495714 (20.10.2013)
Наверх