способ производства штрипсов в рулонах

Классы МПК:C21D8/02 при изготовлении плит или лент
C22C38/20 с медью
Автор(ы):, , ,
Патентообладатель(и):Открытое акционерное общество "Северсталь" (ОАО "Северсталь") (RU)
Приоритеты:
подача заявки:
2010-11-08
публикация патента:

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть применено для получения штрипса с категорией прочности Х70, используемого при строительстве магистральных нефтегазопроводов. Для повышения вязкостных и прочностных свойств штрипса за счет формирования ферритно-бейнитной микроструктуры получают сляб, нагревают его до температуры аустенитизации, затем осуществляют черновую и чистовую горячую прокатку, ускоренное охлаждение штрипса водой до температуры смотки 500-600°С, смотку в рулон и принудительное охлаждение рулонов со скоростью 5-20°С/ч, при этом после завершения черновой прокатки раскат охлаждают до температуры 920-980°С, чистовую прокатку ведут с суммарным обжатием не менее 65% и температурой конца прокатки выше Аr3, а ускоренное охлаждение штрипса водой производят за два этапа, вначале со скоростью 5-8°С/с до температуры 580-620°С, затем со скоростью 0,5-1,5°С/с до температуры смотки. Слябы получают из стали, содержащей следующий химический состав, мас.%: 0,015÷0,090 С; 1,2÷1,8 Mn; 0,1÷0,5 Si; 0,01÷0,10 Nb; 0,01÷0,07 Al; Moспособ производства штрипсов в рулонах, патент № 2436848 0,3; Crспособ производства штрипсов в рулонах, патент № 2436848 0,3; Niспособ производства штрипсов в рулонах, патент № 2436848 0,3; Cuспособ производства штрипсов в рулонах, патент № 2436848 0,3; Vспособ производства штрипсов в рулонах, патент № 2436848 0,12; Sспособ производства штрипсов в рулонах, патент № 2436848 0,010; Pспособ производства штрипсов в рулонах, патент № 2436848 0,015; 0,003÷0,012 N; Fe - остальное. 1 з.п. ф-лы; 3 табл.

Формула изобретения

1. Способ производства штрипсов в рулонах, включающий изготовление слябов, их нагрев до температуры аустенитизации, черновую и чистовую горячую прокатку, ускоренное охлаждение штрипса водой до температуры смотки 500÷600°С, смотку штрипса в рулоны, охлаждение рулонов со скоростью 5÷20°С/ч, отличающийся тем, что после завершения черновой прокатки раскаты охлаждают до температуры 920÷980°С, чистовую прокатку ведут с суммарным обжатием не менее 65% и температурой конца прокатки выше Аr3 , а ускоренное охлаждение штрипсов водой производят за два этапа, причем вначале со скоростью 5÷8°С/с до температуры 580÷620°С, а затем со скоростью 0,5÷1,5°С/с до температуры смотки.

2. Способ по п.1, отличающийся тем, что слябы изготавливают из стали, содержащей следующий химический состав, мас.%:

углерод0,015÷0,090
марганец 1,2÷1,8
кремний 0,1÷0,5
ниобий0,01÷0,10
алюминий 0,01÷0,07
молибден не более 0,3
хромне более 0,3
никель не более 0,3
медьне более 0,3
ванадий не более 0,12
серане более 0,010
фосфор не более 0,015
азот0,003÷0,012
железо остальное

Описание изобретения к патенту

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть применено для получения штрипсов с категорией прочности К60 (Х70), используемых при строительстве магистральных нефтегазопроводов.

Горячекатаные полосы из низколегированной стали с категорией прочности Х70 по стандарту APISL-04, предназначенные для строительства магистральных нефте- и газопроводов, должны сочетать заданные показатели прочности, пластичности, ударной вязкости, иметь высокие показатели свариваемости, коррозионную стойкость и стойкость к водородному растрескиванию (таблица 1).

Таблица 1
Механические свойства штрипсов
способ производства штрипсов в рулонах, патент № 2436848 в, МПа способ производства штрипсов в рулонах, патент № 2436848 т, МПа способ производства штрипсов в рулонах, патент № 2436848 т/способ производства штрипсов в рулонах, патент № 2436848 в способ производства штрипсов в рулонах, патент № 2436848 5, % KCV-40, Дж/см2 ИПГ-10 Холодный загиб на 180°
не менее 620500-600 не более 0,90 не менее 28не менее 127,4не менее 90 выдерж.
Примечание: ИПГ - доля вязкой составляющей в изломе образца при испытании падающим грузом при температуре -10°С.

Известен способ производства полос из низколегированной стали, включающий нагрев слябов до температуры 1050÷1220°С, выдержку, многопроходную черновую и чистовую прокатку с температурой окончания 800÷900°С, охлаждение полос водой на отводящем рольганге до температуры 350÷500°С и смотку в рулоны [1].

Недостатки известного способа состоят в том, что горячекатаные полосы имеют низкие и нестабильные механические свойства - прочность и ударную вязкость.

Известен также способ производства высокопрочных полос из низколегированной стали, включающий нагрев слябов до температуры не выше 1100°С, выдержку при температуре нагрева, многопроходную черновую и чистовую прокатку с температурой окончания 680÷850°С, охлаждение полос водой до температуры 300÷500°С и смотку в рулоны [2].

Известный способ также не обеспечивает получения высоких прочностных и вязкостных свойств полос.

Наиболее близким аналогом по своей технической сущности и достигаемым результатам к предлагаемому изобретению является способ производства штрипсов, включающий выплавку стали, непрерывную разливку в слябы, нагрев слябов до температуры 1190-1250°С, горячую прокатку с температурой окончания 820-870°С, охлаждение водой до температуры 500-580°С и смотку штрипсов в рулоны, согласно предложению смотанные рулоны охлаждают со скоростью 5-20°С/ч до температуры не выше 100°С, слябы разливают из стали следующего химического состава: 0,08-0,13% С; 0,50-0,70% Mn; 0,40-0,65% Si; 0,05-0,09% V; 0,015-0,040% Nb; 0,01-0,03% Ti; 0,02-0,05% Al; Nспособ производства штрипсов в рулонах, патент № 2436848 0,008%; Crспособ производства штрипсов в рулонах, патент № 2436848 0,3%; Niспособ производства штрипсов в рулонах, патент № 2436848 0,3%; Cuспособ производства штрипсов в рулонах, патент № 2436848 0,2%; Sспособ производства штрипсов в рулонах, патент № 2436848 0,005%; Pспособ производства штрипсов в рулонах, патент № 2436848 0,015%; Fe - остальное. Причем суммарное содержание в стали углерода С, марганца Mn, хрома Cr, ванадия V, ниобия Nb, титана Ti, меди Cu, никеля Ni должно удовлетворять соотношениям: С э=C+Mn/6+(Cr+V+Ti)/5+(Cu+Ni)/15способ производства штрипсов в рулонах, патент № 2436848 0,39%, а также Рсм=C+(Mn+Cr+Cu)/20+Si/30+Ni/15+V/10способ производства штрипсов в рулонах, патент № 2436848 0,24% [3].

Недостатки известного способа состоят в том, что штрипсы имеют низкие вязкостные и прочностные свойства, не соответствующие требованиям, предъявляемым к штрипсам категории прочности Х70.

Техническая задача, решаемая изобретением, состоит в повышения вязкостных и прочностных свойств штрипсов за счет формирования ферритно-бейнитной микроструктуры.

Для решения поставленной технической задачи производства штрипсов в рулонах, включающем изготовление слябов, их нагрев до температуры аустенитизации, черновую и чистовую горячую прокатку, ускоренное охлаждение штрипсов водой до температуры смотки 500÷600°С, смотку в рулоны и принудительное охлаждение рулонов со скоростью 5÷20°С/ч, согласно предложению после завершения черновой прокатки раскаты охлаждают до температуры 920÷980°С, чистовую прокатку ведут с суммарным обжатием не менее 65% и температурой конца прокатки Ar3±20°С, а ускоренное охлаждение штрипсов водой производят за два этапа, вначале со скоростью 5÷8°С/с до температуры 580÷620°С, затем со скоростью 0,5÷1,5°С/с до температуры смотки. Помимо этого, слябы изготавливают из стали, содержащей следующий химический состав: 0,015÷0,090% С; 1,2÷1,8% Mn; 0,1÷0,5% Si; 0,01÷0,10% Nb; 0,01÷0,07% Al; Moспособ производства штрипсов в рулонах, патент № 2436848 0,3%; Crспособ производства штрипсов в рулонах, патент № 2436848 0,3%; Niспособ производства штрипсов в рулонах, патент № 2436848 0,3%; Cuспособ производства штрипсов в рулонах, патент № 2436848 0,3%; Vспособ производства штрипсов в рулонах, патент № 2436848 0,12%; Sспособ производства штрипсов в рулонах, патент № 2436848 0,010%; Pспособ производства штрипсов в рулонах, патент № 2436848 0,015%; 0,003÷0,012% N; Fe - остальное.

Сущность предлагаемого изобретения состоит в следующем. Заданный комплекс эксплуатационных свойств штрипсов категории прочности Х70 для газонефтепроводных труб и их стабильность обеспечивается при одновременной оптимизации химического состава стали, температурно-деформационных режимов прокатки, а также охлаждения прокатанных штрипсов и рулонов после их смотки. Благодаря этому достигается формирование мелкозернистой феррито-бейнитной микроструктуры, что является обязательным условием при реализации предлагаемой технологии.

Предложенные параметры деформационно-термической обработки, ускоренного охлаждения и смотки штрипсов из стали данного состава выбраны с целью формирования феррито-бейнитной микроструктуры, отличающейся мелким размером элемента матрицы ферритных зерен (с размером не крупнее 10÷11 номера и полосчатостью не более 1÷2 балла). Основной структурной составляющей микроструктуры штрипсов в этом случае является квази-полигональный феррит с повышенной плотностью дислокаций и нерегулярными границами зерен, доля которых составляет 50÷70%. В меньших количествах присутствуют полигональный феррит традиционной морфологии, а также игольчатый (блочный) феррит, имеющий форму удлиненных кристаллов чешуйчатой формы с субграницами в кристаллах.

При оптической микроскопии образцов штрипсов с малыми увеличениями (до ×500) микроструктура имеет вид, похожий на традиционные феррито-перлитные стали, но принципиально отличается от них тем, что основной составляющей микроструктуры является феррит с нерегулярными (криволинейными) границами зерен и повышенной плотностью дислокации, а участки темно-травящейся фазы, состоящие из смеси вырожденного перлита и верхнего бейнита, имеют более светлый цвет по сравнению с перлитными колониями в традиционной феррито-перлитной стали.

Формирование микроструктуры, основным элементом которой является квази-полигональный феррит, с присутствием в меньших количествах полигонального и игольчатого феррита, позволяет достигать выгодного сочетания свойств штрипсов категории прочности Х70. Заданный комплекс прочностных и вязко-пластических свойств обеспечивается за счет сочетания продуктов промежуточного (бейнитного) превращения и традиционного полиморфного ферритного (диффузионного) превращения с малым количеством включений твердой фазы у межзеренных границ, что позволяет иметь как пластичные элементы ферритной матрицы, так и более прочные бейнитные включения. Кроме того, за счет большой доли большеугловых границ в микроструктуре затрудняется образование трещин и тормозится их развитие.

В стали предложенного химического состава в процессе нагрева слябов до температуры аустенитизации Та достигается растворение крупных карбидных и карбонитридных включений. Черновая прокатка штрипсов сопровождается механическим разрушением и литой структуры стали.

Подстуживание раскатов после черновой прокатки до температуры Тп=920÷980°С и их последующая чистовая прокатка в температурном интервале от Тнп =920÷980°С до температуры конца прокатки Ткп =Ar3±20°С с суммарным относительным обжатием не менее 65% обеспечивает последовательное эффективное многоцикловое диспергирование аустенитных зерен микроструктуры и присутствующих включений. (Здесь Ar3 - температура начала способ производства штрипсов в рулонах, патент № 2436848 способ производства штрипсов в рулонах, патент № 2436848 способ производства штрипсов в рулонах, патент № 2436848 превращения аустенита, зависящая от конкретного химического состава стали, т.е. температура критической точки.)

В процессе ускоренного охлаждения штрипсов водой за два этапа: вначале от температуры Ткп=Ar3±20°С со скоростью V1=5÷8°C/c до промежуточной температуры Тп=580÷620°С и затем со скоростью V2=0,5÷1,5°C/c до температуры смотки штрипсов в рулоны Тсм=500÷600°С, протекает полиморфное превращение диспергированного аустенита в две фазы: мелкозернистый феррит и бейнит. Снижение скорости охлаждения с V1 =5÷8°C/c до V2=0,5÷1,5°C/c обеспечивает более равномерное охлаждение и формирование микроструктуры по толщине штрипсов, уменьшение фазовых и термических напряжений в стали предложенного состава.

Принудительное охлаждение штрипсов, смотанных в рулоны, с регламентированной скоростью Vор=5÷20°С/ч дополнительно повышает прочностные и вязкостные свойства штрипсов, полученных с использованием предложенных деформационно-термических режимов производства, гарантированно доводя механические свойства до уровня, соответствующего требованиям, предъявляемым к штрипсам категории прочности Х70, а также способствует выравниванию механических свойств по их длине.

Экспериментально установлено, что охлаждение раскатов после завершения черновой прокатки до температуры выше 980°С не позволяет обеспечить в стали предложенного состава требуемой степени диспергирования аустенита, что приводит к снижению прочностных и пластических свойств. Снижение этой температуры менее 920°С приводит к уменьшению показателей пластичности ниже допустимого уровня.

При чистовой прокатке с суммарным обжатием менее 65% сохраняется крупнозернистая микроструктура аустенита, это снижает прочностные и вязкостные свойства штрипсов.

Если Ткп выше, чем Ar3+20°С, то не достигается достаточная степень упрочнения штрипса, а при Ткп ниже чем Ar3-20°С снижаются вязкостные свойства штрипсов при отрицательных температурах.

Ускоренное охлаждение штрипсов водой на первом этапе со скоростью V1 ниже чем 5°С/с приводит к формированию крупнозернистой разнобалльной микроструктуры, снижению прочностных и вязкостных свойств. Увеличение скорости охлаждения V1 более 8°С/с сопровождается ухудшением пластичности, снижением доли вязкой составляющей в изломе, что недопустимо.

При температуре окончания первого этапа ускоренного охлаждения штрипсов водой То ниже 580°С снижаются пластические и вязкостные свойства штрипсов. Увеличение температуры То выше 620°С приводит к формированию крупнозернистой микроструктуры, потере прочностных свойств штрипсов.

Ускоренное охлаждение штрипсов водой на втором этапе со скоростью V 2 ниже чем 0,5°С/с приводит к разупрочнению штрипсов. Увеличение скорости охлаждения V2 более 1,5°С/с сопровождается формированием разнобалльной микроструктуры по толщине штрипса, снижению показателей вязкости и доли вязкой составляющей в изломе образца.

Ускоренное охлаждение штрипсов водой до температуры Тсм выше 600°С приводит к росту размеров зернистого перлита, ухудшению трещиностойкости. При Тсм ниже 500°С ухудшается ударная вязкость штрипсов при отрицательных температурах. Сталь не выдерживает испытания на холодный загиб.

Экспериментально установлено, что при принудительном охлаждении рулонов от температуры Тсм=500÷600°С со скоростью менее 5°С/ч не обеспечивается требуемая степень упрочнения штрипсов. Увеличение скорости охлаждения более 20°С/ч приводит к снижению вязкостных и пластических свойств штрипсов, возрастают неравномерности механических свойств внешних и внутренних витков рулонов.

Углерод в стали предложенного состава определяет ее прочностные свойства. Снижение содержания углерода менее 0,015% приводит к падению прочности ниже допустимого уровня. Увеличение содержания углерода сверх 0,090% ухудшает пластичность и вязкость стали.

Марганец введен для раскисления и повышения прочности стали, связывания примесной серы в сульфиды. При содержании марганца менее 1,2% снижается прочность стали и вязкость при отрицательных температурах. Повышение концентрации марганца сверх 1,8% ухудшает пластические свойства, сталь не выдерживает испытаний на холодный изгиб.

Кремний раскисляет и упрочняет сталь, повышает ее упругие свойства. При содержании кремния менее 0,1% прочность стали недостаточна. Увеличение содержания кремния более 0,5% приводит к возрастанию количества силикатных неметаллических включений, охрупчивает сталь, ухудшает ее ударную вязкость и пластичность.

Ванадий и ниобий образуют с углеродом карбиды VC, NbC, а с азотом - нитриды VN, NbN. Мелкие нитриды и карбонитриды ванадия и ниобия располагаются по границам зерен и субзерен, тормозят движение дислокации и, тем самым, упрочняют сталь. При содержании ниобия менее 0,01% его влияние недостаточно велико, свойства стали ниже допустимого уровня. Увеличение концентрации ниобия более 0,10% и ванадия более 0,12% вызывает дисперсионное твердение штрипсов и приводит к выделению на границах их зерен интерметаллических соединений. Это ухудшает вязкостные свойства штрипсов.

Алюминий является раскисляющим и модифицирующим элементом. При содержании алюминия менее 0,01% его воздействие проявляется слабо, сталь имеет низкие механические свойства. Увеличение содержания алюминия более 0,07% приводит к графитизации стали, потере прочности и ударной вязкости штрипсов.

Молибден является сильным карбидообразующим элементом, упрочняющим сталь. Однако при его концентрации более 0,3% имеет место снижение пластических свойств штрипсов, что недопустимо.

Хром, никель и медь способствуют повышению прочностных свойств и стойкости против питтинговой коррозии, но при содержании хрома более 0,3%, никеля более 0,3% или меди более 0,3% имеет место снижение вязкостных свойств штрипсов.

Сера является вредной примесью, снижающей пластические и вязкостные свойства. При концентрации серы не более 0,010% ее вредное действие проявляется слабо и не приводит к заметному снижению механических свойств штрипсов Х70.

Фосфор в количестве не более 0,015% целиком растворяется в способ производства штрипсов в рулонах, патент № 2436848 -железе, что ведет к упрочнению металлической матрицы. Однако увеличение содержания фосфора более 0,015% вызывает охрупчивание стали, снижение вязкостных свойств штрипсов.

Азот является карбонитридообразующим элементом, упрочняющим сталь. При его содержании менее 0,003% снижаются прочностные свойства штрипсов. Повышение концентрации азота сверх 0,012% приводит к снижению вязкостных свойств стали предложенного состава при отрицательных температурах.

Примеры реализации способа

Стали различных составов выплавляли в кислородном конвертере из передельного чугуна с использованием металлического лома. Расплавы раскисляли ферромарганцем, ферросилицием, легировали феррованадием, феррониобием, вводили металлический алюминий и молибден. Проводили десульфурацию и дефосфорацию расплава, продувку аргоном.

Химический состав сталей для штрипсов приведен в таблице 2.

Таблица 2
Химический состав сталей для штрипсов
№ состава Содержание химических элементов, мас.%
СMn SiNb AlMo CrNi CuV SР NFe
1. 0,0141,1 0,090,009 0,0090,08 0,10,1 0,40,08 0,0060,009 0,001 Остальн.
2.0,015 1,20,10 0,010,01 0,100,2 0,20,3 0,100,007 0,0080,003 -:-
3.0,047 1,50,30 0,050,03 0,200,2 0,10,1 0,110,008 0,0120,007 -:-
4.0,090 1,80,50 0,100,07 0,300,3 0,30,3 0,120,010 0,0150,012 -:-
5.0,090 1,90,60 0,120,08 0,400,4 0,40,4 0,130,011 0,0160,013 -:-
6.0,085 0,50,40 0,040,02 --0,1 0,10,1 0,060,005 0,014-- -:-

Выплавленную сталь подвергают непрерывной разливке в слябы толщиной 275 мм.

Непрерывнолитые слябы из стали с составом 3, для которой температура критической точки Ar3=810°С (определена по справочным данным), садят в газовую печь с шагающими балками и производят их нагрев до температуры аустенитизации Та=1250°С. Нагретые слябы подвергают горячей прокатке в черновой группе клетей в раскаты с промежуточной толщиной Н0=50 мм. Полученные раскаты охлаждают на промежуточном рольганге до температуры Тп=950°С, после чего задают в непрерывную чистовую группу, состоящую из 7 клетей кварто.

Чистовую прокатку осуществляют в штрипсы конечной толщины Н1=12,0 мм с суммарным относительным обжатием способ производства штрипсов в рулонах, патент № 2436848 способ производства штрипсов в рулонах, патент № 2436848 =76%.

Заданную температуру конца прокатки Ткп=Ar3=810°С поддерживают изменением скорости прокатки и межклетевым охлаждением полосы.

Прокатанные штрипсы транспортируют по отводящему рольгангу с одновременным охлаждением со скоростью V1=6,5°C/c ламинарными струями воды до То=600°С. При достижении штрипсом указанной температуры скорость охлаждения снижают до величины V2=1,0°C/c, охлаждают штрипс ламинарными струями воды до температуры смотки Тсм=550°С, после чего сматывают в рулоны.

Горячекатаные рулоны подвергают принудительному охлаждению со скоростью Vop =12°C/ч при подаче к их торцам охлаждающей воды и обдуве воздухом.

Варианты реализации предложенного способа и показатели их эффективности приведены в таблице 3.

Из данных, приведенных в таблицах 2 и 3, следует, что при реализации предложенного способа (варианты № 2-4, химический состав сталей № 2-4) обеспечивается повышение прочностных и вязкостных свойства штрипсов. По комплексу своих механических свойств они полностью отвечают требованиям, предъявляемым к штрипсам категории прочности Х70.

Таблица 3
Режимы производства штрипсов их механические свойства
№ п/п Режимы производства Механические свойства
№ составаТ п, °C способ производства штрипсов в рулонах, патент № 2436848 способ производства штрипсов в рулонах, патент № 2436848 , % Ткп, °С V1, °C/c То, °С V2, °C/c Тсм, °С Vор, °С способ производства штрипсов в рулонах, патент № 2436848 в, МПа способ производства штрипсов в рулонах, патент № 2436848 т, МПа способ производства штрипсов в рулонах, патент № 2436848 т/способ производства штрипсов в рулонах, патент № 2436848 в способ производства штрипсов в рулонах, патент № 2436848 5, % KCV-40, Дж/см2 ИПГ-10 Холодн. загиб на 180°
1.1. 91063 770 (Ar3-30) 4570 0,4570 4570 5000,87 24129 87не выдерж.
2. 4.920 65800 (Ar3 -20)5 5800,5 5805 660520 0,7937 13798 выдерж.
3.3. 95076 810 (Ar3) 6,5600 1,0550 12680 5300,78 38140 98выдерж.
4. 2.980 78820 (Ar3 +20)8 6201,5 60020 670536 0,8037 13597 выдерж.
5.5. 99075 835 (Ar3+20) 9630 1,6610 22610 5550,91 27117 78не выдерж.
6. 6.- 70845 не регл.- -540 12610 5000,82 36128 67не выдерж.

В случаях запредельных значений заявленных параметров (варианты № № 1 и № 5) имеет место снижение прочностных и вязкостных свойств. Также более низкую прочность и вязкость имеют штрипсы, полученные согласно способу-протитипу (вариант № 6).

Технико-экономические преимущества предложенного способа производства штрипсов состоят в том, что за счет одновременной оптимизации химического состава стали и температурно-деформационных режимов ее горячей прокатки, регламентированного двухэтапного ускоренного охлаждения полос и принудительного охлаждения рулонов со скоростью 5-20°С/ч обеспечивается повышение прочностных и вязкостных свойств штрипсов, благодаря чему они полностью соответствуют категории прочности Х70.

В качестве базового объекта при оценке технико-экономической эффективности предложенного способа выбран способ-прототип. Использование стали предложенного состава и деформационно-термических режимов горячей прокатки позволит повысить рентабельность производства штрипсов для нефте- и газопроводов на 15-20%.

Источники информации

1. Патент США № 4421573, МПК C21D 8/02, C21D 9/46, 1983.

2. Заявка Японии № 57-29528, МПК C21D 8/00, С22С 38/12, 1982.

3. Патент РФ № 2348703, МПК C21D 8/04, С22С 38/42, С22С 38/46, 2009 - прототип.

Класс C21D8/02 при изготовлении плит или лент

способ производства холоднокатаного проката для упаковочной ленты -  патент 2529325 (27.09.2014)
способ изготовления высокопрочного холоднокатаного стального листа с превосходной обрабатываемостью -  патент 2528579 (20.09.2014)
способ горячей прокатки сляба и стан горячей прокатки -  патент 2528560 (20.09.2014)
высокопрочный холоднокатаный стальной лист с превосходным сопротивлением усталости и способ его изготовления -  патент 2527571 (10.09.2014)
стальной лист, обладающий превосходной формуемостью, и способ его производства -  патент 2527506 (10.09.2014)
холоднокатаный стальной лист, обладающий превосходной сгибаемостью и способ его производства -  патент 2524021 (27.07.2014)
листовая конструкционная нержавеющая сталь, обладающая превосходной коррозионной устойчивостью в сварном шве, и способ ее производства -  патент 2522065 (10.07.2014)
способ производства штрипсов из низколегированной стали -  патент 2519720 (20.06.2014)
способ производства горячего проката из микролегированных сталей -  патент 2519719 (20.06.2014)
способ термомеханической обработки -  патент 2519343 (10.06.2014)

Класс C22C38/20 с медью

способ производства горячекатаного проката повышенной прочности -  патент 2495942 (20.10.2013)
способ закалки колец подшипника качения и подшипник качения -  патент 2493269 (20.09.2013)
способ производства листового проката -  патент 2490337 (20.08.2013)
сортовой прокат горячекатаный из рессорно-пружинной стали -  патент 2479646 (20.04.2013)
способ производства толстолистового низколегированного проката -  патент 2477323 (10.03.2013)
круглый сортовой прокат из борсодержащей стали повышенной прокаливаемости -  патент 2469106 (10.12.2012)
способ производства высокопрочного штрипса для труб магистральных трубопроводов -  патент 2465346 (27.10.2012)
способ производства листов из низколегированной трубной стали класса прочности к56 -  патент 2465343 (27.10.2012)
способ производства толстого листа из микролегированных сталей -  патент 2460809 (10.09.2012)
способ производства холоднокатаных полос низколегированной стали класса прочности 220 -  патент 2452778 (10.06.2012)
Наверх