оптический коммутатор
Классы МПК: | G02F1/295 в оптических волноводах |
Автор(ы): | Донченко Анатолий Анатольевич (RU), Аллес Михаил Александрович (RU), Соколов Сергей Викторович (RU), Донченко Максим Анатольевич (RU) |
Патентообладатель(и): | Донченко Анатолий Анатольевич (RU), Аллес Михаил Александрович (RU), Соколов Сергей Викторович (RU), Донченко Максим Анатольевич (RU) |
Приоритеты: |
подача заявки:
2010-04-06 публикация патента:
27.02.2012 |
Изобретение относится к оптическим устройствам переключения и может быть использовано в волоконно-оптических системах передачи информации для коммутации каналов передачи информации. Устройство содержит n блоков коммутации оптического потока, каждый из которых содержит m пар оптически связанных волноводов, m фотоприемников, m пьезоэлементов, в которые интегрированы m пар оптически связанных волноводов. Коммутатор также содержит (m+1) оптических n-входных объединителей, j-м информационным входом оптического коммутатора является информационный вход j-го блока коммутации оптического потока, адресными входами оптического коммутатора являются соответствующие адресные входы n блоков коммутации оптического потока. Технический результат - повышение быстродействия, упрощение конструкции устройства, обеспечение возможности коммутации каждого из n оптических потоков по f=m+1 каналам передачи информации в волоконно-оптических системах передачи информации. 2 ил.
Формула изобретения
Оптический коммутатор, содержащий оптические волноводы, отличающийся тем, что в него введены n блоков коммутации оптического потока, каждый из которых содержит m пар оптически связанных волноводов, m фотоприемников, m пьезоэлементов, в которые интегрированы m пар оптически связанных волноводов, информационным входом блока коммутации оптического потока является вход первого оптического волновода первой пары оптически связанных волноводов, m адресными входами блока коммутации оптического потока являются входы m фотоприемников, выход каждого из которых подключен к управляющему входу соответствующего пьезоэлемента, выход первого оптического волновода i-й пары оптически связанных волноводов является (i-1)-м выходом блока коммутации оптического потока (i=1, 2, , m), выход второго оптического волновода i-й пары оптически связанных волноводов подключен ко входу первого оптического волновода (i+1)-й пары оптически связанных волноводов, выход второго оптического волновода m-й пары оптически связанных волноводов является m-м выходом блока коммутации оптического потока; также содержит (m+1) оптических n-входных объединителей, j-м информационным входом оптического коммутатора является информационный вход j-го блока коммутации оптического потока, адресными входами оптического коммутатора являются соответствующие адресные входы n блоков коммутации оптического потока, каждый i-й выход j-го блока коммутации оптического потока подключен к j-му входу i-го оптического n-входного объединителя, выходы которых являются выходами оптического коммутатора.
Описание изобретения к патенту
Изобретение относится к оптическим устройствам переключения и может быть использовано в волоконно-оптических системах передачи (ВОСП) информации для коммутации каналов передачи информации.
Известен оптический коммутатор - фотонный коммутатор на основе нелинейного оптического зеркала, предназначенный для коммутации оптического потока в ВОСП [Маккавеев, В. Фотонные коммутаторы / В.Маккавеев // Компоненты и технологии. - 2006. - № 2. - С.142-146, страница 144, рисунок 3] и содержащий нелинейный интерферометр Саньяка, оптические волноводы.
Существенный признак аналога, общий с заявляемым устройством, - оптический волновод.
Недостатком данного аналога является сложность устройства, определяемая необходимостью использования интерферометра Саньяка.
Известен также оптический коммутатор - фотонный коммутатор на основе электрооптического кристалла теллура кадмия, предназначенный для коммутации оптического потока в ВОСП [Маккавеев, В. Фотонные коммутаторы / В.Маккавеев // Компоненты и технологии. - 2006. - № 2. - С.142-146, страница 144, рисунок 4] и содержащий полупроводниковый оптический кристалл теллура кадмия, диэлектрический слой, металлические электроды, источник внешнего электрического напряжения, оптический поляризатор, оптический анализатор, микрообъективы, оптические волноводы.
Существенный признак аналога, общий с заявляемым устройством, - оптический волновод.
Недостатками данного аналога являются сложность конструкции устройства и низкая надежность, ввиду наличия внешнего источника электрического напряжения.
Известен оптический коммутатор - пара оптически связанных волноводов [Акаев, А.А. Оптические методы обработки информации / А.А.Акаев, С.А.Майоров. - М.: Высшая школа, 1988. - 236 с., страница 148, рисунок 5.2], принятый за прототип и предназначенный для переключения оптического потока из одного оптического волновода в другой.
Пара оптически связанных волноводов является существенным признаком заявляемого изобретения.
Недостатком прототипа является невозможность коммутации большого числа каналов передачи информации в ВОСП.
Задачей изобретения является создание оптического коммутатора, позволяющего выполнять переключение каждого из n оптических потоков по f=m+1 каналам передачи информации в ВОСП, и достижения быстродействия коммутации до 105-10 6 в секунду.
Техническим результатом является повышение быстродействия, упрощение конструкции устройства и возможность коммутации каждого из n оптических потоков по f=m+1 каналам передачи информации в ВОСП.
Оптический коммутатор - оптическое переключательное устройство, предназначенное для коммутации каждого из n оптических потоков по f=m+1 каналам передачи информации в ВОСП.
Сущность изобретения состоит в том, что оптический коммутатор содержит n блоков коммутации оптического потока, каждый из которых содержит m пар оптически связанных волноводов, m фотоприемников, m пьезоэлементов, в которые интегрированы m пар оптически связанных волноводов, информационным входом блока коммутации оптического потока является вход первого оптического волновода первой пары оптически связанных волноводов, m адресными входами блока коммутации оптического потока являются входы m фотоприемников, выход каждого из которых подключен к управляющему входу соответствующего пьезоэлемента, выход первого оптического волновода i-й пары оптически связанных волноводов является (i-1)-м выходом блока коммутации оптического потока (i=1, 2, ,m), выход второго оптического волновода i-й пары оптически связанных волноводов подключен ко входу первого оптического волновода (i+1)-й пары оптически связанных волноводов, выход второго оптического волновода m-й пары оптически связанных волноводов является m-м выходом блока коммутации оптического потока; также содержит (m+1) оптических n-входных объединителей, j-м информационным входом оптического коммутатора является информационный вход j-го блока коммутации оптического потока, адресными входами оптического коммутатора являются соответствующие адресные входы n блоков коммутации оптического потока, каждый i-й выход j-го блока коммутации оптического потока подключен к j-му входу i-го оптического n-входного объединителя, выходы которых являются выходами оптического коммутатора.
Функциональная схема оптического коммутатора показана на фигуре 1.
Оптический коммутатор содержит:
- 11, 12, , 1n - n блоков коммутации оптического потока (БКОП);
- 20, 21, , 1m - (m+1) оптических n-входных объединителей.
Оптический коммутатор имеет n информационных входов и m×n адресных входов, где j-м информационным входом оптического коммутатора является информационный вход j-го БКОП 1j (j=1, 2, , n), а адресными входами оптического коммутатора являются соответствующие адресные входы n БКОП 11, 12 , , 1n (по m в каждом). Каждый i-й выход j-го БКОП 1j подключен к j-му входу i-го оптического n-входного объединителя 2i, выходы которых являются выходами оптического коммутатора (i=0, 1, 2, , m; j=1, 2, ,n).
Функциональная схема j-го БКОП 1 j показана на фигуре 2.
БКОП 1j содержит:
- 311, 312, 3 21, 322, , 3m1, 3m2 - m пар оптически связанных волноводов (ОСВ);
- 41, 42 , , 4m - m фотоприемников (ФП);
- 51, 52, , 5m - m пьезоэлементов (ПЭ), в которые в которые интегрированы соответствующие пары ОСВ 311, 3 12, 321, 322, , 3m1, 3m2 таким образом, что при отсутствии на управляющем входе ПЭ управляющего сигнала, изменяющего расстояние между ОСВ, оптическая связь в парах ОСВ отсутствует, появляясь только при наличии управляющего сигнала выше порогового уровня срабатывания ПЭ.
Информационным входом БКОП 1j является вход первого оптического волновода 311 первой пары ОСВ 311, 312 , адресными входами БКОП 1j являются входы m ФП 4 1, 42, , 4m, выход каждого из которых подключен к управляющему входу соответствующего ПЭ 51, 52, , 5m. Выход первого оптического волновода 3 i1 i-й пары ОСВ 3i1, 3i2 является (i-1)-м выходом БКОП 1j (i=1, 2, , m), выход второго оптического волновода 3i2 i-й пары ОСВ 3i1, 3i2 подключен ко входу первого оптического волновода 3i1 (i+1)-й пары ОСВ 3i+1,1, 3i+1,2, выход второго оптического волновода 3m2 m-й пары ОСВ 3m1, 3m2 является m-м выходом БКОП 1j.
Работа устройства протекает следующим образом.
Пусть требуется направить информационный оптический поток, поступающий на j-й информационный вход оптического коммутатора (фигура 1), в i-й канал передачи информации (i=0, 1, 2, , m; j=1, 2, , n). Этот оптический поток поступает соответственно на информационный вход j-го БКОП 1j.
Работа j-го БКОП 1j происходит следующим образом (фигура 2). Чтобы направить оптический поток, поступивший на информационный вход j-го БКОП 1j, в i-й канал передачи информации необходимо подать одновременно на его 1, 2, , i-й адресные входы управляющие оптические сигналы (i=1, 2, , m; j=1, 2, , n). Последние, поступая на адресные входы j-го БКОП 1 j, поступают на входы 1, 2, , i-го ФП 41, 42, , 4i. С выходов последних электрические сигналы поступают на управляющие входы 1, 2, , i-го ПЭ 51, 52, ,5i, которые изменяют расстояния между соответствующими парами ОСВ 311, 312, 321, 3 22, , 3i1, 3i2, что приводит к последовательному переключению входного оптического потока с информационного входа j-го БКОП 1j на его i-й выход. Далее этот оптический поток, попадая на j-й вход i-го оптического n-входного объединителя 2i, поступает в i-й канал передачи информации (i=0, 1, 2, , m; j=1, 2, , n).
(Если на j-м информационном входе оптического коммутатора присутствует оптический поток, и отсутствуют адресные сигналы (управляющие оптические потоки) на всех адресных входах j-го БКОП 1j (фигура 1), то оптический поток, поступая на информационный вход j-го БКОП 1j, направляется на нулевой выход j-го БКОП 1j (фигура 2)).
Таким образом, осуществляется коммутация оптического потока с j-го информационного входа оптического коммутатора в i-й канал передачи информации в ВОСП (i=0, 1, 2, , m; j=1, 2, , n).
Быстродействие оптического коммутатора определяется динамическими характеристиками фотоприемников и пьезоэлементов, входящих в состав блока коммутации оптического потока. Быстродействие фотоприемников, выполненных в традиционном варианте - на основе фотодиодов, составляет 10-9 с, быстродействие пьезоэлементов - 108 Гц. Для существующих волоконно-оптических систем передачи информации подобное быстродействие обеспечивает их функционирование практически в реальном масштабе времени.
Класс G02F1/295 в оптических волноводах