высокопрочная стойкая при динамическом воздействии сталь и способ производства листов из нее
Классы МПК: | C22C38/50 с титаном или цирконием C21D9/42 броневых плит C21D8/02 при изготовлении плит или лент |
Автор(ы): | Горынин Игорь Васильевич (RU), Малышевский Виктор Андреевич (RU), Цуканов Виктор Владимирович (RU), Малахов Николай Викторович (RU), Савичев Сергей Александрович (RU), Гутман Евгений Рафаилович (RU), Нигматулин Олег Экрямович (RU), Гладышев Сергей Александрович (RU), Заря Николай Всеволодович (RU) |
Патентообладатель(и): | Российская Федерация, от имени которой выступает Министерство промышленности и торговли (Минпромторг России) (RU) |
Приоритеты: |
подача заявки:
2011-02-08 публикация патента:
20.07.2012 |
Изобретение относится к области черной металлургии, в частности производству горячекатаного листового проката для изделий и конструкций, подвергающихся воздействию динамических нагрузок. Для повышения прочности и твердости листов и снижения склонности стали к хрупкому разрушению заготовку из стали, содержащей, мас.%: С 0,45-0,50, Мn 0,60-0,80, Si 0,17-0,40, Cr 1,0-1,3, Ni 1,2-1,5, Mo 0,25-0,35, V 0,08-0,15, S 0,005-0,01, P 0,003-0,01, Сu 0,1-0,2, Zr 0,005-0,01, W 0,01-0,05, Fe - остальное, нагревают под ковку до температуры 1050-1100°С, осуществляют ковку при температуре 1100-800°С, не охлаждая с температуры окончания ковки изотермический отжиг при температуре 630-670°С с последующим охлаждением с печью, дробеструйную зачистку поверхности поковок, нагрев под горячую прокатку при температуре 1050-1100°С в печи с нейтральной газовой атмосферой (азот или аргон), горячую прокатку в интервале температур 1100-800°С с промежуточным обжатием 8-25% и суммарным обжатием не менее 80%, охлаждение до температуры внешней среды, закалку при температуре 900-950°С в масло или воду и двойной отпуск при температуре 170-200°С с охлаждением на воздухе. 2 н. и 3 з.п. ф-лы, 1 пр., 2 табл.
Формула изобретения
1. Сталь, включающая углерод, марганец, кремний, хром, никель, молибден, железо и примеси, отличающаяся тем, что она дополнительно содержит цирконий, вольфрам, ванадий и медь при следующем соотношении компонентов, мас.%:
углерод | 0,45-0,50 |
марганец | 0,60-0,80 |
кремний | 0,17-0,40 |
хром | 1,0-1,3 |
никель | 1,2-1,5 |
молибден | 0,25-0,35 |
ванадий | 0,08-0,15 |
сера | 0,005-0,01 |
фосфор | 0,003-0,01 |
медь | 0,1-0,2 |
цирконий | 0,005-0,01 |
вольфрам | 0,01-0,05 |
железо | остальное |
2. Способ производства листового проката из стали по п.1, включающий нагрев заготовок до температуры горячей деформации, прокатку с регламентированным обжатием и закалку с отпуском, при этом нагретые заготовки перед прокаткой подвергают горячей ковке при температуре 1100-800°С, изотермическому отжигу при температуре 630-670°С с охлаждением в печи и повторному нагреву под прокатку до температуры 1050-1100°С в печи с нейтральной атмосферой, а после закалки с отпуском - дополнительному отпуску, причем прокатку проводят при температуре 1100-800°С с суммарным обжатием не менее 80%.
3. Способ по п.2, отличающийся тем, что отжигу подвергают заготовки, имеющие температуру окончания ковки.
4. Способ по п.2, отличающийся тем, что закалку проводят при температуре 900-950°С с охлаждением в масло или воду.
5. Способ по п.2, отличающийся тем, что отпуск и дополнительный отпуск проводят при температуре 170-200°С с охлаждением на воздухе.
Описание изобретения к патенту
Изобретение относится к металлургии, в частности к производству горячекатаного листа, применяемого для изделий и конструкций, подвергающихся динамическому воздействию.
Возрастающие динамические нагрузки при снижении толщины листа требуют более высоких характеристик стали по твердости, прочности и сопротивляемости хрупкому разрушению.
Известны марки стали, обладающие высокой прочностью и твердостью, являющиеся аналогами и указаны в научно-технической и патентной литературе [1-10].
Известна высокопрочная сталь [5], содержащая мас.%: 0,35-0,55 углерода, 0,3 кремния, 0,6 марганца, 0,5-1,5 хрома, 0,7-1,5 молибдена, 0,15-0,3 ванадия, 0,005-0,05 ниобия, 0,025 Р, 0,050 S, допускается содержание никеля от 0,2 до 3,0% или меди 0,05-1% или совместно (молибдена +0,5 от количества вольфрама) - 0,7-1,5% и (титан +0,5 от количества циркония) от 0,005 до 0,02, алюминий 0,10, кальций 0,01, магний 0,01.
Сталь, имеющая прочность от 1350 МПа и более, применяется для изготовления деталей, работающих при статических нагрузках в условиях низких температур. Высокопрочные стали, как известно, обладают склонностью к хрупкому разрушению при эксплуатации.
Также известна высокопрочная сталь [6], содержащая мас.%: 0,25-0,55 углерода, 0,15-2,0 кремния, 0,6-2,0 марганца, 0,7 хрома, 0,2 никеля, 0,05-0,3 ванадия, 0,03 ниобия, до 0,2 меди, до 0,01 серы, до 0,05 фосфора, а также содержит азот от 0,006 до 0,015, свинец от 0 до 0,30, кислород 0,002, 0-0,2% молибдена и 0-0,4% вольфрама, так чтобы молибден +0,5 от количества вольфрама составляли от 0 до 0,2%, титана 0-0,06% и циркония 0-0,1%, так чтобы титан +0,5 от количества циркония составляли от 0 до 0,06%.
При низком содержании хрома и никеля в составе указанная сталь частично имеет феррито-перлитную или феррито-перлитно-бейнитную структуру. Эта структура не обеспечивает требуемые характеристики при воздействии динамической нагрузки.
Известна броневая сталь [7], содержащая компоненты при следующем соотношении, мас.%: углерод 0,38-0,43, кремний 0,50-0,80, марганец 0,30-0,50, хром 1,20-1,50, никель 0,90-1,20, молибден 0,75-0,85, ванадий 0,18-0,28, ниобий 0,02-0,05, медь до 0,30, сера 0,01, фосфор 0,01.
Эта сталь обладает стойкостью при воздействии динамической нагрузки и не имеет хрупких разрушений листа толщиной свыше 10 мм.
Известна броневая сталь [8], содержащая, мас.%: 0,46-0,54 углерода, 0,17-0,37 кремния,0,5 марганца, 2,8-3,2 хрома, 1,5-2,0 никеля, 1,7-2,2 молибдена, 0,25-0,36 ванадия, 0,01-0,03 алюминия, 0,012 серы, 0,012 фосфора.
Эта сталь из-за повышенного содержания карбидообразующих элементов (хрома, молибдена, ванадия) и высокого содержания углерода (до 0,54%) обладает склонностью к хрупкому разрушению, что влечет сложности при сварке и гибке листа.
Броневая сталь указанного состава обеспечивает динамическую стойкость листового проката в толщине не менее 15 мм.
Наиболее близким по области применения и принятым за прототип является сталь [10] следующего состава:
углерод - 0,4-0,7; | кремний - 0,5-1,5; |
марганец - 0,3-1,5; | хром - 0,1-2,0; |
никель - 1,0-5,0 | молибден - 0,2-1,0; |
железо - остальное |
Указанная сталь имеет ряд недостатков:
- большой интервал между минимальным и максимальным количеством содержащихся элементов. Этот состав объединяет стали низколегированные перлито-ферритного класса с низкой прокаливаемостью и стали мартенситного класса с высокой прокаливаемостью;
- сталь при содержании 0,7% углерода (верхний предел легирования) обладает очень высокой хрупкостью;
- отсутствует оптимальная технология термической обработки. В пределах марочного состава и режима термообработки сталь может иметь высокие значения твердости и прочности в - 2200 МПа и низкую ударную вязкость 4 Дж/см 2, а при удовлетворительной ударной вязкости 45 Дж/см 2 низкие значения прочности 1750 МПа. Сталь, имеющая высокую прочность и низкую ударную вязкость, обладает склонностью к хрупким разрушениям, особенно при динамической нагрузке.
Известна технология производства листов из низколегированной стали, применяемой для брони, подвергающейся удару [9].
Сталь подвергается горячей прокатке при температуре ~1150°С с охлаждением на воздухе. Затем проходит аустенизацию при температуре 1080°С с выдержкой при этой температуре (1 час/дюйм) и далее термомеханическую обработку с 50% обжатием при снижающейся температуре 865-700°С, закалку в масле и отпуск при температуре 250-580°С. Твердость проката, изготовленного этим методом, составляет 50-55 HRC.
Данный способ изготовления листового проката не обеспечивает получение стабильной структуры при термомеханической обработке и отпуске, проведенном в интервале температур 250-580°С, что приводит к нестабильности показателей прочности и твердости стали.
Наиболее близким по области применения и принятым за прототип является способ изготовления листового проката [10], включающий прокатку с начальной температурой металла 1150-1250°С и степенью обжатия свыше 50%, закалку листа при температуре, варьируемой от 800 до 960°С, с охлаждением в масле и отпуск при температуре 150-250°С.
Листы, изготовленные из этой стали, по приведенной технологии обеспечивают твердость HRC 56-58 только в толщинах свыше 7 мм.
Кроме того, недостатками способа являются высокая температура нагрева металла под прокатку - 1250°С, которая способствует обезуглероживанию поверхности и росту зерна стали, но при этом отсутствует операция термической обработки, измельчающей зерно; большой интервал температуры закалки - 800-960°С, приводящий к образованию различной структуры металла и получению нестабильных механических свойств стали в пределах ее марочного состава. В пределах легирования стали разброс механических свойств составляет - по прочности от 1750 МПа до 2200 МПа, ударной вязкости - от 4 Дж/см2 до 45 Дж/см2.
Техническим результатом изобретения является повышение прочности стали до 2300 МПа и твердости HRC до 60 ед в сочетании с хорошей сопротивляемостью хрупкому разрушению при динамическом нагружении.
Указанный технический результат достигается за счет того, что сталь, включающая углерод, марганец, кремний, хром, никель, молибден, железо и примеси, дополнительно содержит цирконий, вольфрам, ванадий и медь при следующем соотношении компонентов, мас.%:
углерод | - 0,45-0,50 |
марганец | - 0,60-0,80 |
кремний | - 0,17-0,40 |
хром | - 1,0-1,3 |
никель | - 1,2-1,5 |
молибден | - 0,25-0,35 |
ванадий | - 0,08-0,15 |
сера | - 0,005-0,01 |
фосфор | - 0,003-0,01 |
медь | - 0,1-0,2 |
цирконий | - 0,005-0,01 |
вольфрам | - 0,01-0,05 |
железо | - остальное |
Для достижения необходимой сопротивляемости хрупкому разрушению в состав стали введен никель в количестве 1,2-1,5%.
Легирование медью и ванадием оказывает упрочняющее действие в стали. При совместном легировании стали ванадием и молибденом их упрочняющее действие суммируется, повышается прокаливаемость.
Введение в сталь вольфрама производится для повышения твердости, прокаливаемости и измельчения зерна при кристаллизации стали.
Малые добавки циркония в сталь вводятся для модифицирования и раскисления металла.
Как модификатор цирконий, образуя тугоплавкие карбиды, увеличивает количество центров кристаллизации и измельчает зерно при затвердевании стали. Как раскислитель цирконий не образует оксисульфидных соединений и межкристаллитных сульфидных пленок, имеющих низкую температуру плавления, повышает пластичность и сопротивляемость возникновению горячих трещин.
Цирконий также уменьшает флокеночувствительность стали и ее склонность к росту зерна.
Указанный технический результат достигается также за счет того, что в способе производства листового проката из высокопрочной стали, стойкой при динамическом воздействии, включающем нагрев заготовки до температуры горячей деформации, прокатку с регламентированным обжатием, закалку и отпуск, нагретые заготовки перед прокаткой подвергаются горячей ковке при температуре 1100-800°С, изотермическому отжигу при температуре 630-670°С, с охлаждением с печью и повторному нагреву под прокатку до температуры 1050-1100°С в печи с нейтральной атмосферой, а после закалки с отпуском - дополнительному отпуску, причем прокатку проводят при температуре 1100-800°С с суммарным обжатием не менее 80%. Кроме того, отжигу подвергают заготовки, имеющие температуру окончания ковки, закалку проводят при температуре 900-950°С с охлаждением в масло или в воду, а отпуск и дополнительный отпуск - при температуре 170-200°С с охлаждением на воздухе.
Способ производства, включающий изотермический отжиг заготовок с последующим охлаждением вместе с печью для получения мелкозернистой однородной феррито-перлитной структуры, нагрев заготовок под горячую деформацию в печи с нейтральной атмосферой, уменьшающей толщину обезуглероженного слоя стали, принятые при нагреве под прокатку степень обжатия стали, установленные температуры горячей деформации и закалки с последующими двумя отпусками в сочетании с химическим составом стали и термообработкой, способствуют получению мелкозернистой структуры реечного мартенсита с минимальным содержанием свободных карбидов и обеспечивают необходимое сочетание характеристик стали при динамических нагрузках.
Заготовки нагревают в печи до температуры 1050-1100°С и выдерживают до полного прогрева и подвергают горячей деформации (ковке). После горячей деформации, не охлаждая, заготовки переносятся в печь, где проводится изотермический отжиг при температуре 630-670°С с последующим охлаждением вместе с печью.
После дробеструйной зачистки поверхности заготовок осуществляется нагрев под горячую деформацию при температуре 1050-1100°С в печи с нейтральной газовой атмосферой (азот, аргон).
Горячая деформация проводится в интервале температур 1100-800°С с промежуточным обжатием 8-25% и суммарным обжатием не менее 80%. Далее листовой прокат подвергается закалке при температуре 900-950°С с охлаждением в воде или масле и двойному отпуску при температуре 170-200°С с охлаждением на воздухе.
Пример осуществления изобретения
В открытой индукционной печи были выплавлены 3 плавки стали заявленного состава.
Выплавленный металл разливался в слитки по 40 кг в изложницу.
После охлаждения на воздухе слитки были посажены в печь при температуре 400°С и нагревались до температуры 1100°С, после чего из слитков были изготовлены поковки, которые, не охлаждая с температуры ковки, перенесли в печь с температурой 650°С, где был проведен изотермический отжиг с последующим охлаждением вместе с печью до комнатной температуры. После дробеструйной очистки поковки подвергались нагреву до температуры 1100°С и выдержке, в течение которой в камеру печи подавался газообразный азот. Дальнейшая горячая деформация производилась на листовом прокатном стане с суммарным обжатием 80-81%. Полученные листовые заготовки были термообработаны по следующему режиму: закалка при температуре 910±10 °С с охлаждением в масло и двойной отпуск при температуре 180±10 °С с охлаждением на воздухе.
Результаты химического анализа и испытаний механических свойств листового проката, изготовленного по известному и предлагаемому способам, приведены в табл.1. Технологические режимы деформации и термообработки - в табл.2.
Источники информации
1. С.А.Гладышев, В.А.Григорян. Броневые стали. - М.: Интермет Инжиниринг, 2010.
2. Материалы для судостроения и морской техники. Справочник под ред.ак.РАН И.В.Горынина, НПО «Профессионал», Санкт-Петербург, 2009.
3. Э.Гудремон. Специальные стали. - М.: Металлургия, 1966.
4. В.И.Мелешко, А.П.Качайлов. В.Л.Мазур. Прогрессивные методы прокатки и отделки листовой стали. М.: Металлургия, 1980.
5. Патент Японии JP 2006-070327, С22С 38/00, опубл. 16.03.2006.
6. Патент Японии JP 2003-147478, С22С 38/00. опубл.21.05.2003.
7. Патент RU № 2392347, опубл. 20.06.10.
8. Патент RU 2236482 C1, С22С 38/46, С22С 38/60, опубл. 20.09.2004.
9. Патент США № 3,351, 307, опубл. 07.08.1973 г.
10. Патент США № 5,122,336 опубл. 16.06.1992 - прототип.
Класс C22C38/50 с титаном или цирконием
Класс C21D8/02 при изготовлении плит или лент