устройство для термолинзовой спектроскопии

Классы МПК:G01J3/30 путем измерения интенсивности спектральных линий непосредственно в самом спектре
G01N25/00 Исследование или анализ материалов с помощью тепловых средств
Автор(ы):, , , , ,
Патентообладатель(и):Учреждение Российской академии наук Ордена Ленина и Ордена Октябрьской Революции Институт геохимии и аналитической химии им. В.И. Вернадского РАН (ГЕОХИ РАН) (RU)
Приоритеты:
подача заявки:
2011-05-11
публикация патента:

Изобретение относится к области аналитической химии, а именно к спектрометрии, спектроскопии и спектрофотометрии. Устройство включает оптическую кювету с расположенными в ней диэлектрической диафрагмой, выполненной в центральной части с отверстием, и двумя электродами, расположенными по обе стороны диафрагмы и подключенными к электрическому блоку питания, лазер для зондирования сформированной термолинзы, и блок измерения лазерного излучения с входной диафрагмой, снабжено полупрозрачной пластиной, расположенной под углом 45° к падающему лучу лазера и направляющей излучение в отверстие диафрагмы кюветы, и отражающим зеркалом, расположенным за кюветой по ходу лазерного луча. Устройство также содержит блок контроля стабильности работы лазера с входной диафрагмой и модулятор лазерного излучения, расположенные по ходу луча лазера за и перед полупрозрачной пластиной соответственно и блок управления и регистрации. Выходы блоков измерения лазерного излучения и контроля стабильности работы лазера соединены с входами синхронизирующих детекторов, выходы которых соединены с входом блока управления и регистрации, выход последнего соединен с входом модулятора лазерного излучения. Технический результат заключается в повышении точности, чувствительности и воспроизводимости измерений. 2 з.п. ф-лы, 1 ил. устройство для термолинзовой спектроскопии, патент № 2463568

устройство для термолинзовой спектроскопии, патент № 2463568

Формула изобретения

1. Устройство для термолинзовой спектроскопии, включающее оптическую кювету с расположенными в ней диэлектрической диафрагмой, выполненной в центральной части с отверстием, и двумя электродами, расположенными по обе стороны диафрагмы и подключенными к электрическому блоку питания, лазер для зондирования сформированной термолинзы и блок измерения лазерного излучения с входной диафрагмой, отличающееся тем, что устройство снабжено полупрозрачной пластиной, расположенной под углом 45° к падающему лучу лазера и направляющей излучение в отверстие диафрагмы кюветы, и отражающим зеркалом, расположенным за кюветой по ходу лазерного луча, при этом устройство дополнительно содержит блок контроля стабильности работы лазера с входной диафрагмой и модулятор лазерного излучения, расположенные по ходу луча лазера за и перед полупрозрачной пластиной соответственно, и блок управления и регистрации, блок измерения лазерного излучения и блок контроля стабильности работы лазера снабжены синхронизирующими детекторами, выходы блоков измерения лазерного излучения и контроля стабильности работы лазера соединены с входами синхронизирующих детекторов, выходы которых соединены с входом блока управления и регистрации, выход последнего соединен с входом модулятора лазерного излучения.

2. Устройство по п.1, отличающееся тем, что в качестве полупрозрачной пластинки используют пластину с пропусканием не менее 50% на длине волны лазерного излучения.

3. Устройство по п.1, отличающееся тем, что отражающее зеркало выполнено вогнутым, радиус его кривизны превышает расстояние между диафрагмой ячейки и зеркалом.

Описание изобретения к патенту

Предлагаемое изобретение относится к области аналитической химии, а именно к спектрометрии, спектроскопии и спектрофотометрии.

Известны устройства спектрометрии, спектроскопии и спектрофотомерии ["Основы аналитической химии", под ред. Золотова Ю.А., М., изд. Высшая школа, 2004 г., 3-е изд., Т.2, С.209-224]. Принцип работы этих устройств заключаются в измерении спектральных коэффициентов поглощения, отражения, излучения и спектральной яркости исследуемых веществ.

Известно устройство термолинзовой спектроскопии, в котором лазерный луч фокусируют в какой-либо точке анализируемой жидкости, где в результате формируется термолинза, и исследуют результаты рассеяния, пропускания света, направленного в эту точку фокусировки лазерного излучения [Проскурнин М.А., Кононец М.Ю. "Современная аналитическая термооптическая спектроскопия", "Успехи химии", 2004, № 73, С.1235-1268].

Эти устройства называют устройствами для лазерно-индуцированной термолинзовой спектроскопии (ТЛС).

Недостатком известных устройств является их дороговизна, обусловленная стоимостью лазера и нестабильность образованной термолинзы, обусловленная нестабильностью работы лазера.

Наиболее близким техническим решением к предложенному является устройство для термолинзовой спектроскопии, включающее оптическую кювету с расположенными в ней диэлектрической диафрагмой, выполненной в центральной части с отверстием диаметром не более 1 мм, и двумя электродами, расположенными по обе стороны диафрагмы и подключенными к электрическому блоку питания, лазер для зондирования сформированной термолинзы, и блок измерения лазерного излучения [Патент РФ № № 2282180, кл. G01N 25/00, опубл. 2006.08.20].

В известном устройстве получение термолинзы внутри жидкости основано на формировании внутри жидкости небольшой области с температурой выше температуры окружающей жидкости «термолинзы» за счет формирования области с повышенной плотностью электрического тока.

Регистрация аналитического сигнала осуществляется с помощью зондирующего лазера. Обычно используется полупроводниковый или гелейнеоновый лазер с длиной волны излучения 623 нм.

В случае электроиндуцированной темролинзовой спектроскопии лазерный луч пропускают сквозь раствор через оптические окна по обе стороны от диафрагмы так, чтобы луч проходил точно через отверстие диафрагмы. Без наложения напряжения на электроды луч образует на экране, расположенном по ходу направления луча за кюветой, световое пятно вследствие уширения из-за естественных причин. В центре пятна определяют интенсивность излучения Ip(0). При наложении на электроды кюветы напряжения, вследствие омического нагрева объема раствора, прилегающего к отверстию в пластине, формируется термолинза, из-за чего лазерный луч расфокусируется, уширяется и световое пятно на экране становится шире. Интенсивность излучения в центре пятна становится меньше Ip(устройство для термолинзовой спектроскопии, патент № 2463568 ).

Как и в случае лазерно-индуцированной ТЛС, термолинзовый сигнал рассчитывают как изменение интенсивности в центральной части зондирующего луча I(t) на детекторе в соответствии формулой (ссылка на публикацию в ЖАХЕ):

устройство для термолинзовой спектроскопии, патент № 2463568 ,

где Ip(0) - интенсивность в центре зондирующего луча на детекторе в начальный момент времени (t=0), до образования термолинзы, Ip(устройство для термолинзовой спектроскопии, патент № 2463568 ) - интенсивность в центре зондирующего луча при полностью развившейся термолинзе.

Недостатком известного устройства является недостаточная чувствительность регистрации, поскольку зондирующей лазер только один раз проходит через область термолинзы.

Кроме этого не предусмотрена возможность контроля стабильности работы лазера в моменты регистрации. А именно этот параметр влияет на воспроизводимость и правильность измерений.

Еще один недостаток известного устройства заключается в том, что блок измерения лазерного излучения работает только в режиме регистрации, что негативно сказывается на измерении параметра - отношение сигнал/шум аналитического сигнала.

Задачей предложенного технического решения является повышение точности, чувствительности и воспроизводимости измерения.

Поставленная задача решается тем, что устройство для термолинзовой спектроскопии, включающее оптическую кювету с расположенными в ней диэлектрической диафрагмой, выполненной в центральной части с отверстием, и двумя электродами, расположенными по обе стороны диафрагмы и подключенными к электрическому блоку питания, лазер для зондирования сформированной термолинзы и блок измерения лазерного излучения с входной диафрагмой, снабжено полупрозрачной пластиной, расположенной под углом 45° к падающему лучу лазера и направляющей излучение в отверстие диафрагмы кюветы, и отражающим зеркалом, расположенным за кюветой по ходу лазерного луча, при этом устройство дополнительно содержит блок контроля стабильности работы лазера с входной диафрагмой и модулятор лазерного излучения, расположенные по ходу луча лазера за и перед полупрозрачной пластиной соответственно, и блоком управления и регистрации, блок измерения лазерного излучения и блок контроля стабильности работы лазера снабжены синхронизирующими детекторами, выходы блоков измерения лазерного излучения и контроля стабильности работы лазера соединены с входами синхронизирующих детекторов, выходы которых соединены с входом блока управления и регистрации, выход последнего соединен с входом модулятора лазерного излучения.

Предпочтительно в качестве полупрозрачной пластинки использовать пластину с пропусканием не менее 50% на длине волны лазерного излучения, отражающее зеркало выполнить вогнутым, радиус его кривизны превышает расстояние между диафрагмой ячейки и зеркалом.

На чертеже представлена схема устройства для термолинзовой спектроскопии.

Устройство для термолинзовой спектроскопии состоит из оптической кюветы 1 с расположенными в ней диэлектрической диафрагмой 2, выполненной в центральной части с отверстием 3, и двумя электродами 4, расположенными по обе стороны диафрагмы 2 и подключенными к электрическому блоку питания 5, лазер 6 для зондирования сформированной термолинзы и блок измерения лазерного излучения 7 с входной диафрагмой 8.

Устройство содержит также полупрозрачную пластину 9, расположенную под углом 45° к падающему лучу лазера 6 и направляющую излучение в отверстие 3 диафрагмы 2 кюветы 1, и отражающее зеркало 10, расположенное за кюветой 1 по ходу лазерного луча 11.

Устройство дополнительно содержит блок контроля стабильности работы лазера 12 с входной диафрагмой 13 и модулятор лазерного излучения 14, расположенные по ходу луча 11 лазера 6 за и перед полупрозрачной пластиной 9 соответственно, и блоком управления и регистрации 15.

Блок измерения лазерного излучения 7 и блок контроля стабильности работы лазера 12 снабжены синхронизирующими детекторами 16 и 17.

Выходы блоков измерения лазерного излучения 7 и контроля стабильности работы лазера 12 соединены с входами синхронизирующих детекторов 16 и 17, выходы которых соединены с входом блока управления и регистрации 15, выход последнего соединен с входом модулятора лазерного излучения 14.

Блок управления и регистрации 15 соединен с компьютером 18.

Устройство работает следующим образом.

Лазер 6 излучает оптический луч 11, который прерывается с постоянной частотой модулятором лазерного излучения 14. Частота модуляции существенно больше, чем характерное время развития термолинзы. Модулированное лазерное излучение падает на полупрозразную пластину 9, которая расположена под углом 45° к падающему лучу лазера 6. Часть излучения отражается от пластинки 9 и направляется в оптическую кювету 1 в отверстии 3 диафрагмы 2, где происходит формирование термолизы. Другая часть излучения проходит через пластину 9 и регистрируется блоком контроля стабильности работы лазера 12. Регистрация осуществляется с помощью синхронизирующего детектора 17, работающего на частоте модуляции лазерного излучения. Регистрируется величина интенсивности Iл(t) в момент времени t.

Излучение, направленное в оптическую кювету 1, проходит через нее и падает на отражающее зеркало 10. Отразившись от зеркала 10, излучение снова проходит через кювету 1 и далее, пройдя через полупрозрачную пластину 9, попадает в систему измерения лазерного излучения 7, используемую для регистрации термолинзового эффекта. Регистрация осуществляется с помощью синхронизирующего детектора 16, работающего на частоте модуляции лазерного излучения. Регистрируется величина интенсивности I р(t) в момент времени t.

Электрический блок питания 5 подает электрическое напряжение на электроды 4 оптической кюветы 1, в которой в момент подачи электрического напряжения происходит формирование электроиндуцированной термолинзы.

Зарегистрированные интенсивности Iл(t) и Iр(t) поступают в блоком управления и регистрации 15, который связан с компьютером 18. Блок 15 также управляет электрическим блоком питания 5.

Измерение проводят следующим образом.

В оптическую кювету 1 заливают анализируемую жидкость. В начальный момент времени (t=0), до образования термолинзы, т.е. до подачи напряжения на кювету 1, одновременно регистрируют интенсивности Iл(0) и I р(0) с помощью блоков измерения лазерного излучения 7 и контроля стабильности работы лазера 12. С помощью полученных величин определяют Т(0)=Iр(0)/Iл(0). Далее подают напряжение на электроды 4 оптической кюветы 1. Одновременно регистрируют изменение интенсивности от времени Iл (t) и Iр(t). Определяют Iр(устройство для термолинзовой спектроскопии, патент № 2463568 ) - интенсивность в центре зондирующего луча при полностью развившейся термолинзе и в этот же момент времени величину I л(устройство для термолинзовой спектроскопии, патент № 2463568 ). С помощью полученных величин определяют

Т(устройство для термолинзовой спектроскопии, патент № 2463568 )=Iр (устройство для термолинзовой спектроскопии, патент № 2463568 )/Iл(устройство для термолинзовой спектроскопии, патент № 2463568 ). Аналитическим термолинзовым сигналом является величина

устройство для термолинзовой спектроскопии, патент № 2463568

Это выражение аналогично применяемому выражению, как и в случае лазерно-индуцированной ТЛС. Однако оно учитывает нестабильность работы лазера 6 при измерении интенсивности в разные промежутки времени.

В предлагаемом устройстве зондирующей лазер дважды проходит через термолинзу, кратно повышая чувствительность регистрации. Также в предлагаемом устройстве производится контроль выходной энергии лазера за счет использования модулятора и синхронного детектирования оптических сигналов.

С помощью описанного устройства получены экспериментальные результаты измерения концентрации минеральных солей и кислот с нижней границей определяемых содержаний в 1-2 µМ (для НNО3, КСl, NaCl, K2SO4, BaCl 2) и относительным стандартным отклонением, равным 0,02-0,05 в диапазоне концентраций 10-1-10-5 М. Сравнение результатов с кондуктометрическими измерениями показало незначимое отклонение измеренных концентраций.

Класс G01J3/30 путем измерения интенсивности спектральных линий непосредственно в самом спектре

способ локализации зон шумоизлучения движущегося транспортного средства -  патент 2498238 (10.11.2013)
двухфотонный сканирующий микроскоп -  патент 2472118 (10.01.2013)
способ определения температурного распределения частиц конденсированной фазы в двухфазном плазменном потоке -  патент 2383873 (10.03.2010)
система обнаружения взрывчатых веществ методом спектроскопии многократно нарушенного полного внутреннего отражения (мнпво) в процессе биометрической идентификации -  патент 2343430 (10.01.2009)
способ измерения параметров спектральных линий при спектральном анализе -  патент 2291406 (10.01.2007)
маркирующая добавка во взрывчатое вещество, способ ее приготовления, способ определения происхождения взрывчатого вещества и устройство для его осуществления -  патент 2283823 (20.09.2006)
устройство для исследования оптических параметров объекта излучения -  патент 2270983 (27.02.2006)
способ спектроскопической диагностики -  патент 2249188 (27.03.2005)
способ определения спектральных характеристик излучающего объекта -  патент 2193167 (20.11.2002)

Класс G01N25/00 Исследование или анализ материалов с помощью тепловых средств

калориметр переменной температуры (варианты) -  патент 2529664 (27.09.2014)
способ выявления массовой скорости выгорания древесины в перекрытии здания -  патент 2529651 (27.09.2014)
способ определения коэффициента теплового объемного расширения жидкости -  патент 2529455 (27.09.2014)
способ определения теплозащитных свойств материалов и пакетов одежды -  патент 2527314 (27.08.2014)
способ измерения теплопроводности и теплового сопротивления строительной конструкции -  патент 2527128 (27.08.2014)
способ определения степени повреждения силосного корпуса элеватора из сборного железобетона -  патент 2525313 (10.08.2014)
способ определения теплоты адсорбции и теплоты смачивания поверхности и измерительная ячейка калориметра -  патент 2524414 (27.07.2014)
способ измерения тепловых эффектов дифференциальным модуляционным сканирующим калориметром и калориметр для его осуществления -  патент 2523760 (20.07.2014)
способ определения удельной теплоемкости материалов -  патент 2523090 (20.07.2014)
способ определения влагоемкости твердых гигроскопичных объектов -  патент 2522754 (20.07.2014)
Наверх