способ термической обработки стали

Классы МПК:C21D1/78 комбинированные способы термообработки, не предусмотренные в предыдущих рубриках 
C21D1/28 нормализация 
C21D1/56 отличающиеся охлаждающими закалочными средствами 
C22C38/04 содержащие марганец
Автор(ы):, ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Брянская государственная инженерно-технологическая академия" (RU)
Приоритеты:
подача заявки:
2011-04-07
публикация патента:

Изобретение относится к термической обработке доэвтектоидных низколегированных сталей и может быть преимущественно использовано при термической обработке сталей типа 20Г-20ГЛ. Для повышения механических свойств стали осуществляют термоциклирование с нагревом и охлаждением и отпуск, при этом термической обработке подвергают низколегированные стали, содержащие, мас.%: 0,15-0,25 С и 1,2-1,5 Mn, термоциклирование ведут с нагревом до температуры аустенитизации 930°С и ускоренным охлаждением со скоростью 0,2-0,8 град./с, причем в первом цикле нагрев изделий проводят вместе с печью и ускоренно охлаждают, в промежуточных циклах нагрев ведут ускоренно со скоростью 50-70 град./мин в печи, нагретой до 930°С, с выдержкой до 10 минут, исключающей полную гомогенизацию аустенита, и ускоренно охлаждают до 400°С, а в последнем цикле охлаждают до комнатной температуры, при этом количество циклов составляет до 5, а отпуск проводят при 400°С в течение 2 часов. 2 табл., 3 ил.

способ термической обработки стали, патент № 2481406 способ термической обработки стали, патент № 2481406 способ термической обработки стали, патент № 2481406

Формула изобретения

Способ термической обработки доэвтектоидной стали, включающий термоциклирование с нагревом и охлаждением и отпуск, отличающийся тем, что термической обработке подвергают низколегированную сталь, содержащую, мас.%: 0,15-0,25 С и 1,2-1,5 Mn, термоциклирование осуществляют с нагревом до температуры аустенитизации 930°С и ускоренным охлаждением со скоростью 0,2-0,8°/с, причем в первом цикле нагрев стали проводят вместе с печью и ускоренно охлаждают, в промежуточных циклах нагрев ведут ускоренно со скоростью 50-70°/мин в печи, нагретой до 930°С, с выдержкой до 10 мин, исключающей полную гомогенизацию аустенита, и ускоренно охлаждают до 400°С, а в последнем цикле охлаждают до комнатной температуры, при этом количество циклов составляет до 5, а отпуск проводят при 400°С в течение 2 ч.

Описание изобретения к патенту

Изобретение относится к термической обработке доэвтектоидных низколегированных сталей и может быть преимущественно использовано при термической обработке сталей типа 20Г-20ГЛ.

Известен способ термической (термоциклической) обработки сталей [1], включающий многократный нагрев выше AC3 и охлаждение ниже AC1 до температур 590-610°С. Недостатком способа является невысокий уровень прочностных свойств низкоуглеродистых сталей.

Наиболее близким к предлагаемому является способ термоциклической обработки сталей типа 20, 20Л и 20ФЛ [2], включающий трехкратную обработку с ускоренным нагревом до температуры аустенитизации 900°С, гомогенизацией аустенита при этой температуре и охлаждением до температуры ниже A C1 со скоростью 5 град/с. Способ обеспечивает измельчение ферритно-перлитной структуры до d=5-11 мкм, повышение прочностных свойств, пластичности и особенно хладостойкости сталей (до - 40°С). Однако способ не позволяет реализовать возможности более значительного повышения всего уровня механических свойств.

Задачей изобретения является создание в стали дисперсной структуры, состоящей из феррита, перлита и зернистого бейнита, обладающего микрокомпозиционной субструктурой.

Технический эффект - получение комплекса высоких и стабильных механических свойств стали (предела текучести, предела прочности, пластичности и ударной вязкости).

Это достигается тем, что способ термической обработки доэвтектоидных сталей, включающий термоциклирование с нагревом и охлаждением и отпуск, отличается тем, что термической обработке подвергают низколегированные стали, содержащие 0,15-0,25% С и 1,2-1,5% Mn, термоциклирование осуществляют с нагревом до температуры аустенитизации 930°С и ускоренным охлаждением со скоростью 0,2-0,8 град./с, причем в первом цикле нагрев изделий проводят вместе с печью и ускоренно охлаждают, в промежуточных циклах нагрев ведут ускоренно со скоростью 50-70 град./мин в печи, нагретой до 930°С, с выдержкой до 10 минут, исключающей полную гомогенизацию аустенита, и ускоренно охлаждают до 400°С, а в последнем цикле охлаждают до комнатной температуры, при этом количество циклов составляет до 5, а отпуск проводят при 400°С в течение 2 часов.

Термоциклическая обработка стали в виде многократной нормализации (до 5 циклов) с ускоренным нагреванием и охлаждением проводится с целью существенного измельчения общей структуры (до среднего размера зерен 5-10 мкм вместо 35-40 мкм при обычной однократной нормализации), а отпуск после заключительного цикла нормализации - для снятия напряжений, возникающих в легированных сталях при ускоренном охлаждении. Важно также снижение температуры при охлаждении до 400°С, обеспечивающее сильное обогащение марганцем и диспергирование участков остаточного аустенита, армирующих значительную часть ферритных зерен. При нагревании в последующих циклах аустенитизация не доводится до полной гомогенизации аустенита (в отличие от способа-прототипа) в связи с ограничением длительности выдержки при высоких температурах. Участки негомогенизированного аустенита с повышенным содержанием марганца инициируют при охлаждении формирование очень устойчивого и ультрадисперсного зернистого бейнита. Поэтому при такой обработке стали, содержащей 1,2-1,5% Mn, обеспечивается субструктурный эффект, заключающийся в формировании особой композиционной структуры зернистого бейнита, состоящей из ферритной матрицы и армирующих ее волокнистых включений остаточного аустенита или продуктов его распада, имеющих наноразмерную толщину, в количестве 25-30% от всей структуры стали [3]. Таким образом, в сталях типа 20Г - 20ГЛ после предлагаемой термической обработки формируется структура, диспергированная на двух уровнях - обычном структурном (в виде измельченных ферритных и перлитных зерен) и субструктурном (в виде ультрадисперсного зернистого бейнита).

Эксперименты проведены на стали 20ГЛ производства Бежицкого сталелитейного завода, содержащей, % масс.: 0,18 С, 1,35 Mn, 0,32 Si, 0,14 Cr, 0,12 Ni, 0,10 Cu, 0,01 Ti, 0,02 S и 0,03 P. Термическая обработка проводилась в лабораторной печи на заготовках толщиной 30 мм, вырезанных из стандартных литых трефовидных проб. Режимы термоциклической обработки: при первом цикле нагрев вместе с печью до 930°С, выдержка 30 минут, регулируемое охлаждение со скоростями 0,07, 0,17, 0,2 и 0,82 град./с, при последующих циклах - ускоренный нагрев до 930°С, выдержка 10 минут, регулируемое охлаждение до 400°С (в последнем цикле - до комнатной температуры), количество циклов от 1 до 5. После заключительного этапа термоциклической обработки проводили отпуск для снятия напряжений по режиму: температура 400°С, длительность 2 часа.

Из термообработанных заготовок вырезали образцы для металлографического анализа и механических испытаний.

Исследование структуры сталей проводилось на микроскопе Альтами МЕТ-1М при увеличениях от 100 до 1000 раз. Шлифы подвергались двойному травлению - ниталем и тепловому. Определяли средний размер ферритных и перлитных зерен, а также наличие и относительное количество зерен с субструктурой зернистого бейнита.

Механические испытания проводили на стандартных образцах, определяя предел прочности (временное сопротивление разрыву) способ термической обработки стали, патент № 2481406 B, предел текучести способ термической обработки стали, патент № 2481406 0,2, относительное удлинение способ термической обработки стали, патент № 2481406 , относительное сужение способ термической обработки стали, патент № 2481406 и ударную вязкость KCU-60 (при -60°С).

Влияние режимов термоциклической обработки на зернистость структуры стали показано на рис.1. Относительное количество зернистого бейнита приведено в табл.1.

Видно, что наиболее сильное влияние на измельчение структуры стали (до d=10 мкм) оказывают первые три цикла обработки при повышенных скоростях охлаждения 0,2-0,4 град./с. Дальнейшее увеличение количества циклов нормализации и скорости охлаждения менее эффективно для измельчения ферритно-перлитной структуры, а превышение 5 циклов нормализации не имеет практического смысла, лишь усложняя и удорожая термическую обработку. Повышение скорости охлаждения до 1 и более град./с неблагоприятно и в связи с изменением характера структуры из-за появления в ней грубых игольчатых составляющих (прежде всего, верхнего бейнита).

Из табл.1 видно также, что максимальное количество ультрадисперсного зернистого бейнита в структуре стали типа 20ГЛ может достигать 25-30% при режимах обработки с n=2-3 при Vохл до 0,8 град./с. При большем числе циклов такое количество зернистого бейнита может быть получено и при меньших скоростях охлаждения (0,2-0,4 град./с). При скоростях охлаждения более 0,8 град./с количество зернистого бейнита не увеличивается, а может даже уменьшаться из-за его частичной замены верхним бейнитом.

Влияние термоциклической обработки на механические свойства стали показано на рис.2-3. Видно, что измельчение структуры до d=6-5 мкм в сочетании с повышенным до 30% количеством ультрадисперсного зернистого бейнита обеспечивает значительное повышение всего комплекса механических свойств по сравнению с минимальными значениями для нормализованных сталей по ГОСТу 977-88: предела прочности до 720-750 МПа (вместо 540 МПа), предела текучести до 560-600 МПа (вместо 275-320 МПа), относительного удлинения до 40% (вместо 18%), относительного сужения до 70% (вместо 25%), ударной вязкости KCU-60 до 90-100 Дж/см2 (вместо 49,1 Дж/см2 при +20°С).

Даже двойная нормализация с ускоренным охлаждением позволяет измельчить структуру до dспособ термической обработки стали, патент № 2481406 12 мкм и повысить предел прочности до 630 МПа, предел текучести до 450 МПа, относительное удлинение до 30%, относительное сужение до 60%, ударную вязкость KCU-60 до 75 Дж/см2 .

Обычно существенным недостатком литых сталей является их невысокая ударная вязкость при отрицательных температурах (низкая хладостойкость) [2]. Термоциклическая обработка по способу [2] позволяет довести хладостойкось до -40°С, а термическая обработка по предлагаемому способу - до температуры менее -60°С.

По сравнению с прототипом даже применительно к более прочной стали 20ФЛ [1] предлагаемый способ обеспечивает более высокий уровень всего комплекса механических свойств. Обусловлено это как самим способом термической обработки, так и применением этого способа к группе сталей с повышенным содержанием марганца, в которых при такой обработке обеспечивается не только сильное измельчение ферритно-перлитной структуры, но и дополнительный микрокомпозиционный эффект за счет появления субструктуры зернистого бейнита.

Источники информации

1. Авторское свидетельство СССР № 459518, кл. C21d 1/00, 1975.

2. В.К.Федюкин. Метод термоциклической обработки металлов. - Л.: Изд-во Ленинградского университета, 1984. - 192 с.

3. Г.И.Сильман. Сплавы системы Fe-C-Mn. Часть 4. Особенности структурообразования в марганцевых и высокомарганцевых сталях // Металловедение и термическая обработка металлов, 2006, № 1. - С.3-7.

СПИСОК ТАБЛИЦ

Таблица 1. Влияние режимов термоциклической обработки на количество зернистого бейнита в структуре стали 20ГЛ.

Таблица 2. Сопоставление механических свойств и хладостойкости сталей, термообработанных разными способами.

ПОДРИСУНОЧНЫЕ ПОДПИСИ

Рис.1. Влияние скорости охлаждения V на средний размер зерна d в структуре стали при ее термоциклической обработке с разным количеством циклов n (R2 - корреляционное соотношение):

при n=1d=17 V -0,35 мкм, R2=0,98 (1);
при n=2d=9,0 V -0,4 мкм, R2=0,99 (2);
при n=3d=5,3 V -0,4 мкм, R2=0,98 (3);
при n=5d=4,2 V -0,4 мкм, R2=0,98 (4)

Рис.2. Влияние размера зерна d в структуре стали на ее прочностные свойства:

предел текучести стали 20ГТЛ способ термической обработки стали, патент № 2481406 0.2-940 d0,3 МПа, R2=0,99,
предел прочности стали 20ГТЛ способ термической обработки стали, патент № 2481406 в=1025 d0,2 МПа, R2=0,99

Рис.3. Влияние размера зерна d в структуре на ударную вязкость KCU-60, относительное удлинение способ термической обработки стали, патент № 2481406 и относительное сужение способ термической обработки стали, патент № 2481406 стали 20ГЛ:

KCU-60=157 d0,3 Дж/см2, R2=0,97 (1),
способ термической обработки стали, патент № 2481406 =65 d0,3%, R2=0,98 (2),
способ термической обработки стали, патент № 2481406 =120 d0,3%, R2=0,97 (3)

Таблица 1
Скорость охлаждения, град/с Количество зернистого бейнита, %, при числе циклов
1 23 45
0,07 00 05 5
0,17 10 1215 2020
0,20 1515 2025 25
0,40 20 2530 3030
0,82 2530 3030 30

Таблица 2
Сталь Механические свойства Хладостойкость t, °C
способ термической обработки стали, патент № 2481406 В, МПа способ термической обработки стали, патент № 2481406 0,2, МПа способ термической обработки стали, патент № 2481406 , %способ термической обработки стали, патент № 2481406 , %KCU, Дж/см 2
20ГЛГОСТ (не менее) 540 27518 2549,1 при +20°С -
Заявка*720-750 560-600 до 40до 70 90-100 при -60°С Ниже -60°С
Заявка** 630 45030 6075 при -60°С Ниже -60°С
20ФЛГОСТ (не менее) 491 29418 3549,1 при +20°С -
Данные [2]*635 438 2556 --40
20Л ГОСТ (не менее) 412 21622 3549,1 при +20°С -
Данные [2]*530 330 2460 до 160 для стали 20 при +40°С -40
*При измельчении до d=5-10 мкм
**При измельчении до d=12-15 мкм

Класс C21D1/78 комбинированные способы термообработки, не предусмотренные в предыдущих рубриках 

способ подготовки структуры стали к дальнейшей термической обработке -  патент 2526341 (20.08.2014)
способ термической обработки отливок из коррозионностойкой стали мартенситного класса -  патент 2526107 (20.08.2014)
способ производства деталей из стальных отливок -  патент 2509162 (10.03.2014)
способ термической обработки конструкционных сталей на высокопрочное состояние -  патент 2506320 (10.02.2014)
закаленная мартенситная сталь с низким содержанием кобальта, способ получения детали из этой стали и деталь, полученная этим способом -  патент 2497974 (10.11.2013)
способ изготовления инструментального композиционного материала -  патент 2483123 (27.05.2013)
лист электротехнической стали с ориентированной зеренной структурой и способ его изготовления -  патент 2480535 (27.04.2013)
способ упрочнения плунжерных пар топливных насосов дизельных двигателей -  патент 2463358 (10.10.2012)
способ обработки поверхностей стальных деталей -  патент 2462517 (27.09.2012)
способ термической обработки изделий из сплавов на основе железа (варианты) -  патент 2447163 (10.04.2012)

Класс C21D1/28 нормализация 

Класс C21D1/56 отличающиеся охлаждающими закалочными средствами 

способ комплексной термической обработки стали -  патент 2503726 (10.01.2014)
способ термической обработки чугунных фрикционных клиньев тележки грузового вагона, закалочное устройство для его осуществления и фрикционный клин из чугуна -  патент 2489499 (10.08.2013)
способ термической обработки стальных фрикционных клиньев тележки грузового вагона и закалочное устройство для его осуществления -  патент 2489498 (10.08.2013)
способ охлаждения металлической полосы, движущейся через секцию охлаждения линии непрерывной термообработки, и установка для внедрения вышеуказанного способа -  патент 2441075 (27.01.2012)
способ термической обработки изделий из конструкционных сталей -  патент 2422540 (27.06.2011)
способ термической обработки металлических изделий -  патент 2384628 (20.03.2010)
способ создания охлаждающей среды с регулируемыми теплофизическими свойствами -  патент 2354712 (10.05.2009)
способ термической обработки штампованных поковок -  патент 2318880 (10.03.2008)
способ термической обработки крупногабаритных изделий -  патент 2277593 (10.06.2006)
способ термической обработки крупногабаритных изделий -  патент 2265066 (27.11.2005)

Класс C22C38/04 содержащие марганец

высокопрочный холоднокатаный лист с превосходной формуемостью и способ его изготовления -  патент 2527514 (10.09.2014)
способ получения металлоизделия с заданным структурным состоянием -  патент 2516213 (20.05.2014)
высокопрочная гальванизированная листовая сталь и способ ее изготовления -  патент 2510423 (27.03.2014)
способ комплексной термической обработки стали -  патент 2503726 (10.01.2014)
двухслойная, стойкая к динамическому воздействию, листовая сталь высокой прочности и способ ее производства -  патент 2501657 (20.12.2013)
способ изготовления штампованных изделий и штампованные изделия, изготовленные этим способом -  патент 2499847 (27.11.2013)
рельсы из перлитной стали с превосходной износостойкостью и ударной вязкостью -  патент 2485201 (20.06.2013)
перлитные рельсы -  патент 2476617 (27.02.2013)
способ производства низкоуглеродистой холоднокатаной тонколистовой стали -  патент 2471876 (10.01.2013)
способ производства листа из электротехнической стали с ориентированным зерном -  патент 2465348 (27.10.2012)
Наверх