способ получения пентафторида ниобия и/или тантала

Классы МПК:C01G33/00 Соединения ниобия
C01G35/02 галогениды
C01G1/06 галогениды 
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)
Приоритеты:
подача заявки:
2011-10-06
публикация патента:

Изобретение относится к области материаловедения и металлургии, а именно к способам получения пентафторидов ниобия или тантала. Способ включает взаимодействие металлических ниобия или тантала с фторирующим агентом, в качестве которого используют фторид меди в соотношении не более 4 моль фторида меди на 1 моль металлического ниобия или тантала, нагрев реактора до 500°С и термическую или вакуумную отгонку образующихся пентафторидов ниобия или тантала. Технический результат заключается в разработке технологии получения пентафторида ниобия или тантала, не требующего сложного аппаратурного оформления и использования химически активных и сильнодействующих ядовитых веществ. 3 пр.

Формула изобретения

Способ получения пентафторида ниобия или тантала, включающий взаимодействие металлических ниобия или тантала с фторирующим агентом, отличающийся тем, что в качестве фторирующего агента используют фторид меди в соотношении не более 4 моль фторида меди на 1 моль металлического ниобия или тантала, осуществляют нагрев реактора до 500°С и термическую или вакуумную отгонку образующихся пентафторидов ниобия или тантала.

Описание изобретения к патенту

Изобретение относится к области химической технологии и может быть использовано для получения каталитически активных пентафторида ниобия или тантала.

Известен способ получения безводных пентафторидов ниобия и тантала взаимодействием оксидов или оксигалогенидов ниобия и тантала с фтористым водородом в количестве не менее 5 молей на моль исходного вещества и дегидратирующим агентом (фосгеном, тионилхлоридом или сульфурилхлоридом) при температуре 50-200°С [Пат. РФ № 2089505].

Недостатками данного способа является использование коррозионно-активного фтористого водорода и сильнодействующих ядовитых веществ (фосген).

Известен способ получения безводных пентафторидов ниобия и тантала взаимодействием петахлорида ниобия и тантала с фтористым водородом [Химия и технология редких и рассеянных элементов. Ч.III. Под. ред К.А.Большакова. Учеб. пособие для вузов. М., «Высш. Школа». 1976. стр.44 и 56].

Недостатками данного способа является использование коррозионно-активного фтористого водорода и предварительно синтезированного пентахлорида ниобия и тантала.

Известен способ получения пентафторидов ниобия и тантала [Химия и технология редких и рассеянных цементов. Ч.III. Под. ред. К.А.Большакова. Учеб. пособие для вузов. М., «Высш. Школа». 1976 стр.44 и 56], выбранный в качестве прототипа, заключается в взаимодействии элементов фтора с металлическим ниобием пли танталом при температуре 300°С.

Недостатком этого способа является использование элементного флора, что требует специального оборудования для уменьшения коррозии, вызываемой фтором, приводящим к тому, что пенафториды ниобия или тантала, полученные этим способом, являются очень дорогими.

Задачей настоящего изобретения является создание дешевого и надежною способа получения пентафторида ниобия или тантала из металлического ниобия или тантала.

Поставленная задача достигается тем, что в качестве фторирующего агента используется фторид меди(II) CuF2. Способ получения включает в себя стадии смешения исходного ниобия или тантала с фторидом меди, инициирование реакции нагревом реактора до 500°С и вакуумной или термической отгонкой образующихся пентафторидов ниобия иди тантала. Процесс протекает согласно реакциям:

способ получения пентафторида ниобия и/или тантала, патент № 2482064

способ получения пентафторида ниобия и/или тантала, патент № 2482064

Количество фторида меди, используемого для реакции с металлическим ниобием или танталом, должно быть не более 4 моль фторида меди на 1 моль металла согласно уравнениям (1; 2) для образования пентафторида ниобия или тантала. Использование большего количества фторида меди может приводить к образованию фторниобатов и фтортанталатов меди (CuNbF6, CuNbF 7, CuTaF6, CuTaF7), в результате чего снижается выход пентафторидов ниобия или тантала и увеличивается количество побочных продуктов, вследствие чего увеличивается себестоимость пентафторидов ниобия или тантала.

Пример 1

В цилиндрический реактор из нержавеющей стали, снабженный внешним обогревом, добавляют предварительно перемешанные фторид меди в количестве 11,81 г (116,3 ммоль) с металлическим порошком ниобия в количестве 2.7 г (20.0 ммоль) в соотношении Nb:CuF2=1:4. Затем реактор снабжают объемным десублиматором и системой вакуумирования. Систему вакуумируют и нагревают реактор до 500°С для инициации реакции. Выделяющийся в результате реакции пентафторид ниобия возгоняется и поступает на улавливание в объемный десублиматор, где происходит его конденсация. Выход пентафторида ниобия составил 4,5 г, что соответствует 83% от теоретического (5.46 г).

Пример 2

В цилиндрический реактор из нержавеющей стали, снабженный внешним обогревом, добавляют предварительно перемешанные фторид меди в количестве 8.0 г (87.3 ммоль) с металлическим порошком ниобия в количестве 2,7 (29,0 ммоль) в соотношении Nb:CuF2 =1:3. Затем реактор снабжают объемным десублиматором и системой вакуумирования. Систему вакуумируют и нагревают реактор до 500°С для инициации реакции. Выделяющийся в результате реакции петафторид ниобия возгоняется и поступает на улавливание в объемный десублиматор. где происходит его конденсация. Выход пентафторида ниобия составил 5,0 г, что соответствует 92% от теоретического выхода (5,46 г).

Пример 3

В цилиндрический реактор из нержавеющей стали, снабженный внешним обогревом, добавляют предварительно перемешанные фторид меди в количестве 6,4 г (63,0 ммоль) с металлическим порошком тантала в количестве 3.8 г (21,0 ммоль) в соотношении Ta:CuF2=1:3. Затем реактор снабжают объемным десублиматором и системой вакуумирования. Систему вакуумируют и нагревают реактор до 500°С для инициации реакции. Выделяющийся в результате реакции пентафторид тантала возгоняется и поступает на улавливание в объемный десублиматор, где происходит его конденсация. Выход пентафторида тантала составил 5,2 г, что соответствует 90% от теоретического выхода (5,8 г).

Применение данного способа позволяет сократить затраты на производство петафторида ниобия или тантала за счет использования более дешевого фторирующего агента, не требующего использования специфических реагентов и специализированного оборудования.

Класс C01G33/00 Соединения ниобия

способ получения шихты ниобата лития для выращивания монокристаллов -  патент 2502672 (27.12.2013)
способ получения планарного волновода оксида цинка в ниобате лития -  патент 2487084 (10.07.2013)
способ получения покрытых аморфным углеродом наночастиц и способ получения карбида переходного металла в форме нанокристаллитов -  патент 2485052 (20.06.2013)
способ получения интеркаляционных соединений на основе слоистых дихалькогенидов металлов и катионов тетраалкиламмония -  патент 2441844 (10.02.2012)
субоксиды ниобия -  патент 2424982 (27.07.2011)
способ производства карбида переходного металла и/или сложного карбида переходного металла -  патент 2417949 (10.05.2011)
способ получения чистого пентахлорида ниобия и устройство для его осуществления -  патент 2381179 (10.02.2010)
порошок оксида вентильного металла и способ его получения -  патент 2378199 (10.01.2010)
порошок недоокиси ниобия, анод из недоокиси ниобия и конденсатор с твердым электролитом -  патент 2369563 (10.10.2009)
недоокись ниобия, способ ее получения и конденсатор, содержащий недоокись ниобия в качестве анода -  патент 2363660 (10.08.2009)

Класс C01G35/02 галогениды

Класс C01G1/06 галогениды 

Наверх