способ перемешивания шлаковой ванны при электрошлаковом переплаве расходуемого электрода
Классы МПК: | C22B9/18 электрошлаковая переплавка F27D27/00 Устройства для перемешивания расплавленного материала B22D23/10 электрошлаковое литье |
Автор(ы): | Левков Леонид Яковлевич (RU), Кригер Юрий Николаевич (RU), Орлов Сергей Витальевич (RU), Дуб Алексей Владимирович (RU), Ульянов Михаил Васильевич (RU), Каширина Жанна Казбековна (RU), Шурыгин Дмитрий Александрович (RU), Свитенко Игорь Александрович (RU), Киссельман Михаил Анатольевич (RU), Каманцев Сергей Владимирович (RU), Бессонов Александр Васильевич (RU), Красовский Анатолий Владимирович (RU), Губанков Евгений Сергеевич (RU), Снежинская Елена Юрьевна (RU) |
Патентообладатель(и): | Открытое акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" (RU) |
Приоритеты: |
подача заявки:
2012-04-06 публикация патента:
27.05.2013 |
Изобретение относится к спецэлектрометаллургии и может быть использовано при изготовлении слитка стали электрошлаковым переплавом расходуемого электрода. В способе продувку ведут смесью азота с кислородом с расходом 0,7-1,2 л на 1 кг переплавляемого расходуемого электрода при 1,43-2,45 л/мин, а количество кислорода в смеси поддерживают в пределах 0,5-10 об.% от общего количества вдуваемой в шлаковую ванну смеси. Изобретение позволяет снизить энергозатраты, повысить температурную стабильность шлаковой ванны, эффективность рафинирующего действия шлака и качества поверхности выплавляемого слитка.
Формула изобретения
Способ перемешивания шлаковой ванны при электрошлаковом переплаве расходуемого электрода, включающий продувку шлаковой ванны газом, отличающийся тем, что продувку ведут смесью азота с кислородом с расходом 0,7-1,2 л на 1 кг переплавляемого расходуемого электрода при 1,43-2,45 л/мин, а количество кислорода в смеси поддерживают в пределах 0,5-10 об.% от общего количества вдуваемой в шлаковую ванну смеси.
Описание изобретения к патенту
Изобретение относится к электрометаллургии и может быть использовано при изготовлении слитка электрошлаковым переплавом расходуемого электрода.
Известен способ электрошлакового переплава расходуемого электрода, включающий перемешивание расплава шлаковой ванны путем продувки через расплав, в том числе через зону плавления расходуемого электрода, инертного газа. Способ реализуют путем подачи инертного газа (аргона) в шлаковую ванну по каналу, выполненному в теле расходуемого электрода.
(US 3867976, C22B 9/18, опубликовано 25.02.1975).
Наиболее близким по технической сущности и достигаемому результату является способ перемешивания шлаковой ванны при электрошлаковом переплаве, включающий продувку через шлаковую ванну, в том числе через зону плавления расходуемого электрода, инертного газа. Способ реализуют подачей инертного газа через несколько трубчатых элементов, равномерно размещенных в шлаковой ванне вдоль расходуемого электрода.
(JP 52124423 (A), B22D 23/10, 07/02, C22B 9/18, опубликовано 19.10.1977)
Недостатком известных способов является заметное снижение температуры шлака при продувке газа, что приводит к увеличению энергозатрат, снижает эффективность усреднения температуры шлаковой ванны и эффективность рафинирующего действия шлака на расплавленный металл электрода и, в конечном счете, снижает качества металла в слитке и качество поверхности выплавляемого слитка.
Задачей изобретения и его техническим результатом является снижение энергозатрат, повышение температурной стабильности шлаковой ванны, эффективности рафинирующего действия шлака и качества поверхности выплавляемого слитка.
Технический результат достигается тем, что способ перемешивания шлаковой ванны при электрошлаковом переплаве расходуемого электрода включает продувку газа через шлаковую ванну, причем продувку ведут смесью азота с кислородом в количестве 0,7-1,2 л на 1 кг расходуемого электрода с расходом 1,43-2,45 л/мин, а количество кислорода в смеси поддерживают в пределах 0,5-10 об.% от общего количества продуваемой смеси.
Перемешивание шлаковой ванны, в том числе продувкой через нее инертного или нейтрального газа, усредняет ее температуру, что в целом благоприятно сказывается на электрических параметрах переплава расходуемого электрода, стабилизируя вводимую в шлаковую ванну электрическую мощность и улучшая качество поверхности выплавляемого слитка. Использование азота как основы газовой смеси удешевляет процесс переплава и снижает стоимость выплавляемого слитка, а кислород в смеси в количестве 0,5-10 об.% обеспечивает дополнительное тепловыделение в шлаковой ванне, что положительно влияет на температурную стабильность шлаковой ванны, эффективность рафинирующего действия шлака и качество поверхности выплавляемого слитка. Кроме того, наличие кислорода в смеси предотвращает зарастание шлаком продувочных отверстий, то есть снижение эффективности или даже прекращение процесса перемешивания шлаковой ванны.
Расход газовой смеси азота с кислородом в количестве 0,7-1,2 л на 1 кг переплавляемого расходуемого электрода является оптимальным. Уменьшение количества используемой смеси меньше 0,7 л на 1 кг переплавляемого расходуемого электрода при расходах 1,43-2,45 л/мин не дает эффективного перемешивания. Это приводит к недостаточному прогреву периферийной части шлаковой ванны в сравнении с ее центральной частью, формированию гарнисажа, в том числе на продувочных отверстиях, различной толщины и образованию гофров и шлаковых включений на поверхности выплавляемого слитка.
Увеличение количества используемой смеси больше 1,2 л на 1 кг переплавляемого расходуемого электрода при расходах 1,43-2,45 л/мин уменьшает теплоотдачу шлаковой ванны из-за ее чрезмерного охлаждения вводимой смесью и требует дополнительных энергозатрат для получения требуемого качества слитка.
Поддержание расхода газовой смеси меньше 1,43 л/мин уменьшает ее кинетическую энергию и не обеспечивает образование обратных газошлаковых потоков, что ухудшает эффективность усреднения температуры шлаковой ванны в ее полном объеме и ухудшает качество поверхности выплавляемого слитка из-за образования гофр и шлаковых включений.
Поддержание расхода вдуваемой в шлаковую ванну смеси больше 2,45 л/мин ухудшает рафинирующие способности шлака.
Поддержание количества кислорода в смеси меньше 0,5% от общего количества продуваемой смеси приводит к зашлакованности продувочных отверстий и снижению эффективности процесса перемешивания шлаковой ванны.
Достижение поставленного технического результата можно проиллюстрировать следующим примером выплавки полого слитка массой 170 кг с использованием перемещаемого уширенного водоохлаждаемого кристаллизатора. Масса расходуемого электрода с учетом несплавляемой части составила 200 кг. Продувку смесью азота с кислородом вели через отверстия, размещенные в уширении кристаллизатора на уровне зоны плавления расходуемого электрода. При времени переплава 83 мин количество использованной для продувки смеси азота с кислородом составило 138,6 л, что составляет 0,9 л на 1 кг переплавляемого расходуемого электрода, при этом расход вдуваемой в шлаковую ванну смеси составлял 2,31 л/мин.
Количество используемого кислорода составило 5 л, что составляет 6,93% от общего количества продуваемой смеси. При переплаве толщина гарнисажа в верхней части шлаковой ванны составила около 0,9 мм, а в нижней части около 1,0 мм, что свидетельствует о температурной стабильности всего объема шлаковой ванны за счет удовлетворительного перемешивания смесью кислорода с азотом. Поверхность выплавленного полого слитка была гладкой, блестящей, без гофр и шлаковых включений и не требовала дополнительной механической обработки.
Класс C22B9/18 электрошлаковая переплавка
Класс F27D27/00 Устройства для перемешивания расплавленного материала
Класс B22D23/10 электрошлаковое литье