способ перемешивания шлаковой ванны при электрошлаковом переплаве расходуемого электрода

Классы МПК:C22B9/18 электрошлаковая переплавка
F27D27/00 Устройства для перемешивания расплавленного материала
B22D23/10 электрошлаковое литье
Автор(ы):, , , , , , , , , , , , ,
Патентообладатель(и):Открытое акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" (RU)
Приоритеты:
подача заявки:
2012-04-06
публикация патента:

Изобретение относится к спецэлектрометаллургии и может быть использовано при изготовлении слитка стали электрошлаковым переплавом расходуемого электрода. В способе продувку ведут смесью азота с кислородом с расходом 0,7-1,2 л на 1 кг переплавляемого расходуемого электрода при 1,43-2,45 л/мин, а количество кислорода в смеси поддерживают в пределах 0,5-10 об.% от общего количества вдуваемой в шлаковую ванну смеси. Изобретение позволяет снизить энергозатраты, повысить температурную стабильность шлаковой ванны, эффективность рафинирующего действия шлака и качества поверхности выплавляемого слитка.

Формула изобретения

Способ перемешивания шлаковой ванны при электрошлаковом переплаве расходуемого электрода, включающий продувку шлаковой ванны газом, отличающийся тем, что продувку ведут смесью азота с кислородом с расходом 0,7-1,2 л на 1 кг переплавляемого расходуемого электрода при 1,43-2,45 л/мин, а количество кислорода в смеси поддерживают в пределах 0,5-10 об.% от общего количества вдуваемой в шлаковую ванну смеси.

Описание изобретения к патенту

Изобретение относится к электрометаллургии и может быть использовано при изготовлении слитка электрошлаковым переплавом расходуемого электрода.

Известен способ электрошлакового переплава расходуемого электрода, включающий перемешивание расплава шлаковой ванны путем продувки через расплав, в том числе через зону плавления расходуемого электрода, инертного газа. Способ реализуют путем подачи инертного газа (аргона) в шлаковую ванну по каналу, выполненному в теле расходуемого электрода.

(US 3867976, C22B 9/18, опубликовано 25.02.1975).

Наиболее близким по технической сущности и достигаемому результату является способ перемешивания шлаковой ванны при электрошлаковом переплаве, включающий продувку через шлаковую ванну, в том числе через зону плавления расходуемого электрода, инертного газа. Способ реализуют подачей инертного газа через несколько трубчатых элементов, равномерно размещенных в шлаковой ванне вдоль расходуемого электрода.

(JP 52124423 (A), B22D 23/10, 07/02, C22B 9/18, опубликовано 19.10.1977)

Недостатком известных способов является заметное снижение температуры шлака при продувке газа, что приводит к увеличению энергозатрат, снижает эффективность усреднения температуры шлаковой ванны и эффективность рафинирующего действия шлака на расплавленный металл электрода и, в конечном счете, снижает качества металла в слитке и качество поверхности выплавляемого слитка.

Задачей изобретения и его техническим результатом является снижение энергозатрат, повышение температурной стабильности шлаковой ванны, эффективности рафинирующего действия шлака и качества поверхности выплавляемого слитка.

Технический результат достигается тем, что способ перемешивания шлаковой ванны при электрошлаковом переплаве расходуемого электрода включает продувку газа через шлаковую ванну, причем продувку ведут смесью азота с кислородом в количестве 0,7-1,2 л на 1 кг расходуемого электрода с расходом 1,43-2,45 л/мин, а количество кислорода в смеси поддерживают в пределах 0,5-10 об.% от общего количества продуваемой смеси.

Перемешивание шлаковой ванны, в том числе продувкой через нее инертного или нейтрального газа, усредняет ее температуру, что в целом благоприятно сказывается на электрических параметрах переплава расходуемого электрода, стабилизируя вводимую в шлаковую ванну электрическую мощность и улучшая качество поверхности выплавляемого слитка. Использование азота как основы газовой смеси удешевляет процесс переплава и снижает стоимость выплавляемого слитка, а кислород в смеси в количестве 0,5-10 об.% обеспечивает дополнительное тепловыделение в шлаковой ванне, что положительно влияет на температурную стабильность шлаковой ванны, эффективность рафинирующего действия шлака и качество поверхности выплавляемого слитка. Кроме того, наличие кислорода в смеси предотвращает зарастание шлаком продувочных отверстий, то есть снижение эффективности или даже прекращение процесса перемешивания шлаковой ванны.

Расход газовой смеси азота с кислородом в количестве 0,7-1,2 л на 1 кг переплавляемого расходуемого электрода является оптимальным. Уменьшение количества используемой смеси меньше 0,7 л на 1 кг переплавляемого расходуемого электрода при расходах 1,43-2,45 л/мин не дает эффективного перемешивания. Это приводит к недостаточному прогреву периферийной части шлаковой ванны в сравнении с ее центральной частью, формированию гарнисажа, в том числе на продувочных отверстиях, различной толщины и образованию гофров и шлаковых включений на поверхности выплавляемого слитка.

Увеличение количества используемой смеси больше 1,2 л на 1 кг переплавляемого расходуемого электрода при расходах 1,43-2,45 л/мин уменьшает теплоотдачу шлаковой ванны из-за ее чрезмерного охлаждения вводимой смесью и требует дополнительных энергозатрат для получения требуемого качества слитка.

Поддержание расхода газовой смеси меньше 1,43 л/мин уменьшает ее кинетическую энергию и не обеспечивает образование обратных газошлаковых потоков, что ухудшает эффективность усреднения температуры шлаковой ванны в ее полном объеме и ухудшает качество поверхности выплавляемого слитка из-за образования гофр и шлаковых включений.

Поддержание расхода вдуваемой в шлаковую ванну смеси больше 2,45 л/мин ухудшает рафинирующие способности шлака.

Поддержание количества кислорода в смеси меньше 0,5% от общего количества продуваемой смеси приводит к зашлакованности продувочных отверстий и снижению эффективности процесса перемешивания шлаковой ванны.

Достижение поставленного технического результата можно проиллюстрировать следующим примером выплавки полого слитка массой 170 кг с использованием перемещаемого уширенного водоохлаждаемого кристаллизатора. Масса расходуемого электрода с учетом несплавляемой части составила 200 кг. Продувку смесью азота с кислородом вели через отверстия, размещенные в уширении кристаллизатора на уровне зоны плавления расходуемого электрода. При времени переплава 83 мин количество использованной для продувки смеси азота с кислородом составило 138,6 л, что составляет 0,9 л на 1 кг переплавляемого расходуемого электрода, при этом расход вдуваемой в шлаковую ванну смеси составлял 2,31 л/мин.

Количество используемого кислорода составило 5 л, что составляет 6,93% от общего количества продуваемой смеси. При переплаве толщина гарнисажа в верхней части шлаковой ванны составила около 0,9 мм, а в нижней части около 1,0 мм, что свидетельствует о температурной стабильности всего объема шлаковой ванны за счет удовлетворительного перемешивания смесью кислорода с азотом. Поверхность выплавленного полого слитка была гладкой, блестящей, без гофр и шлаковых включений и не требовала дополнительной механической обработки.

Класс C22B9/18 электрошлаковая переплавка

способ электрошлаковой выплавки заготовки корпуса с патрубком -  патент 2506142 (10.02.2014)
способ получения крутоизогнутых отводов -  патент 2503515 (10.01.2014)
способ электрошлакового переплава и устройство для его осуществления -  патент 2497959 (10.11.2013)
способ электрошлакового переплава -  патент 2487182 (10.07.2013)
способ электрошлакового переплава металлосодержащих отходов -  патент 2487181 (10.07.2013)
флюс для электрошлакового переплава -  патент 2487173 (10.07.2013)
способ получения биметаллического слитка -  патент 2485188 (20.06.2013)
способ электрошлакового переплава -  патент 2479649 (20.04.2013)
способ контроля уровня жидкой металлической или шлаковой ванны в кристаллизаторе и устройство для его осуществления -  патент 2456118 (20.07.2012)
способ электрошлакового переплава и устройство для его осуществления -  патент 2448173 (20.04.2012)

Класс F27D27/00 Устройства для перемешивания расплавленного материала

Класс B22D23/10 электрошлаковое литье

способ электрошлаковой выплавки заготовки корпуса с патрубком -  патент 2506142 (10.02.2014)
установка для электрошлаковой выплавки крупных полых и сплошных слитков -  патент 2456355 (20.07.2012)
способ изготовления штампового инструмента и форм литья под давлением из литых заготовок мартенситностареющих сталей -  патент 2448806 (27.04.2012)
способ изготовления отливок методом электрошлакового центробежного литья -  патент 2447161 (10.04.2012)
установка для электрошлаковой выплавки полых слитков -  патент 2445383 (20.03.2012)
устройство для изготовления котельных и паропроводных труб среднего и большого диаметра методом электрошлакового переплава -  патент 2441928 (10.02.2012)
способ изготовления трубных заготовок для тонкостенных высокопрочных корпусов -  патент 2429939 (27.09.2011)
водоохлаждаемая форма для электрошлакового литья заготовок -  патент 2428278 (10.09.2011)
способ электрошлакового литья трубных заготовок -  патент 2414989 (27.03.2011)
способ электрошлакового литья трубных заготовок -  патент 2410195 (27.01.2011)
Наверх