полушестеренно-реечная поршневая машина
Классы МПК: | F01B9/06 с криволинейными поверхностями для передачи движения поршней |
Автор(ы): | Некрасов Владимир Иванович (RU), Новоселов Владимир Васильевич (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тюменский государственный нефтегазовый университет" (ТюмГНГУ) (RU) |
Приоритеты: |
подача заявки:
2012-01-10 публикация патента:
27.05.2013 |
Изобретение относится к области машиностроения и может быть использовано в ДВС, компрессорах, насосах, в том числе многоцилиндровых. Поршневая машина содержит картер с зафиксированными в нем цилиндрами, поршни соединены двусторонними зубчатыми рейками, каждая зубчатая рейка валами с полушестернями и рядом шестерен взаимосвязана с коренным валом (валами). Расширяются возможности поршневой машины, она обратима - позволяет использовать ее как высокоэкономичный ДВС, а также как компрессор или насос, в том числе многоцилиндровый, кроме того, возможно совмещение поршневых машин разной размерности и различного назначения - быстроходного ДВС малой размерности с тихоходным ДВС большой размерности, ДВС и компрессора, ДВС и насоса. 1 з.п. ф-лы, 5 ил.
Формула изобретения
1. Полушестеренно-реечная поршневая машина, содержащая картер с зафиксированными в нем цилиндрами, поршни с зубчатыми рейками, отличающаяся тем, что поршни соединены двусторонними зубчатыми рейками, каждая зубчатая рейка поочередно взаимосвязана с полушестернями, зафиксированными на валах, которые могут быть коренными, на торцах валов установлены согласующие шестерни, зацепленные через промежуточную шестерню, расположенную на оси, закрепленной на картере.
2. Полушестеренно-реечная поршневая машина по п.1, отличающаяся тем, что соседние валы цилиндров разной размерности взаимозацеплены синхронизирующей шестерней или шестернями.
Описание изобретения к патенту
Предлагаемое устройство относится к машиностроению, в частности к двигателестроению, производству компрессоров, насосов.
Поршневые машины применяются в качестве двигателей внутреннего сгорания, компрессоров или насосов.
Известно устройство - ДВС (двигатель внутреннего сгорания), основу которого представляет собой КШМ (кривошипно-шатунный механизм), преобразующий возвратно-поступательное движение поршня во вращательное движение коленчатого вала (1. Двигатели внутреннего сгорания: Устройство и работа поршневых и комбинированных двигателей / В.П.Алексеев и др. - М.: Машиностроение, 1990. - 288 с.).
Однако КШМ имеет существенные недостатки: сила от давления газов на поршень не в полной мере используется для вращения коленчатого вала, снижая КПД механизма и двигателя, в мертвых точках возникает «перекладка» поршня - изменение направления действия боковой силы, создающая динамические нагрузки. КШМ конструктивно сложен - имеет несколько нагруженных шарнирных соединений: коренные и шатунные шейки, опоры поршневого пальца, требующие совершенной системы смазки с подачей моторного масла под давлением. Для уравновешивания массы кривошипов необходимо устанавливать противовесы, нужен маховик, накапливающий энергию рабочего хода, обеспечивающий другие такты двигателя, а также прохождение поршня через мертвые точки.
Сила от давления газов на поршень раскладывается на две составляющие: одна по оси шатуна, другая создает боковую нагрузку на поршень, вызывающую потери энергии на трение и износ. Сила, действующая по оси шатуна на шатунную шейку, также раскладывается на две составляющие: одна нагружает коренные шейки, полезную нагрузку - крутящий момент на коленчатом валу создает только вторая составляющая силы, перпендикулярная кривошипу.
Известны бесшатунные двигатели внутреннего сгорания без КШМ на основе авторского свидетельства № 118471 (2. Баландин С.С. Бесшатунные поршневые двигатели внутреннего сгорания. - М.: Машиностроение, 1972. - 176 с.). Бесшатунный механизм позволяет конструктивно просто осуществлять при малых габаритах и высокой быстроходности двигателей двусторонний рабочий процесс в цилиндрах и получать вследствие этого почти удвоенную литровую и габаритную мощность /2/.
Однако бесшатунный механизм имеет сложную кинематику (/2/ см. рис.3-10 и др.). В ряде конструкций функции шатунов выполняют ползуны, но в любом случае остается коленчатый вал, который сложно изготовить, его коренные шейки нуждаются в смазке под давлением, между коленчатым и ведущим валами надо устанавливать зубчатые передачи (/2/ см. рис.12), усложняющие конструкцию двигателя.
Известны реечные зубчатые механизмы, взаимосвязанные с поршнями. Первая в мире паровая трехколесная повозка Кюньо имела привод на переднее колесо от двух поршней паровых машин рейками, работающими поочередно. Один из первых двигателей Н.Отто имел вертикальный цилиндр, поршень которого рейкой взаимодействовал с зубчатым венцом вала отбора мощности через обгонную муфту.
Однако эти машины и механизмы были несовершенны, имели невысокий КПД, низкую частоту вращения, а значит и невысокую мощность. Муфты свободного хода недолговечны, они не обеспечивают четкое срабатывание при высокой частоте вращения.
Наиболее близким к предлагаемому техническому решению является поршневая машина с шестеренно-реечным механизмом (1. с.262, рис.182, б).
Известно, что такая поршневая машина состоит из цилиндров, расположенных в них противоположно развернутых поршней с шарнирно установленной на каждом поршне зубчатой рейкой, зацепленной с шестерней, закрепленной на валу.
Однако поршневая машина с таким механизмом имеет ограниченные возможности и шестеренно-реечный механизм применяют только как синхронизирующий на быстроходных генераторах газа.
Задача, на решение которой направлено заявляемое техническое решение, состоит в расширении возможностей поршневой машины с шестеренно-реечным механизмом.
Сущность предлагаемого устройства заключается в том, что:
1) полушестеренно-реечная поршневая машина содержит картер с зафиксированными в нем цилиндрами, поршни с зубчатыми рейками, при этом поршни соединены двусторонними зубчатыми рейками, каждая зубчатая рейка поочередно взаимосвязана с полушестернями, зафиксированными на валах, которые могут быть коренными, на торцах валов установлены согласующие шестерни, зацепленные через промежуточную шестерню, расположенную на оси, закрепленной на картере, эта шестерня может быть объединена с коренным валом, коренных валов может быть несколько.
2) полушестеренно-реечная поршневая машина по п.1, при этом соседние валы цилиндров разной размерности взаимозацеплены синхронизирующей шестерней или шестернями.
Предлагаемое техническое решение существенно расширяет возможности поршневой машины, она обратима - позволяет использовать ее как быстроходный высокоэкономичный ДВС, а также как компрессор или насос, в том числе многоцилиндровый, кроме того, возможно совмещение поршневых машин разной размерности и различного назначения - быстроходного ДВС малой размерности с тихоходным ДВС большой размерности, ДВС и компрессора, ДВС и насоса.
На фиг.1 показана упрощенная схема полушестеренно-реечной поршневой машины с двусторонней зубчатой рейкой постоянного профиля в состоянии, когда поршни находятся в крайнем левом положении: левый поршень в ВМТ (верхней мертвой точке), правый поршень в НМТ (нижней мертвой точке). Для поршневой машины с горизонтальным расположением цилиндров ВМТ и НМТ отсутствуют - они расположены на одном уровне. Целесообразно назвать эти точки: ДКТ - дальняя крайняя точка и БКТ - ближняя крайняя точка по отношению к центру поршневой машины. На схеме не показаны газораспределительный механизм, системы охлаждения, смазки и др.
На фиг.2 приведена упрощенная схема полушестеренно-реечной поршневой машины с двусторонней зубчатой рейкой переменного профиля в состоянии, когда поршни находятся в крайнем левом положении.
На фиг.3 показан поперечный разрез полушестеренно-реечной поршневой машины по осям расположения полушестерен. Разрез упрощен - не показаны уплотнения, фиксация подшипников, осей и т.д.
На фиг.4 приведены упрощенные кинематические схемы полушестеренно-реечной поршневой машины по осям расположения полушестерен: вид «а» соответствует фиг.3, вид «б» - схема компоновки поршневых машин разной быстроходности при расположении цилиндров в два ряда - «послойно».
На фиг.5 представлена упрощенная кинематическая схема полушестеренно-реечной поршневой машины по осям расположения полушестерен - схема компоновки поршневых машин разной быстроходности при расположении цилиндров в одной плоскости. Вид «а» - поперечный разрез, вид «б» - фрагмент продольного разреза на уровне двусторонних зубчатых реек.
В картере 1 зафиксированы цилиндры 2 с головками цилиндров 3. В цилиндрах 2 установлены поршни 4 с компрессионными и маслосъемным поршневыми кольцами, соединенные двусторонними зубчатыми рейками 5. Рейки 5 зацеплены с полушестернями 6, зафиксированными на валах 7. На торцах валов 7 установлены согласующие шестерни 8, зацепленные между собой через промежуточную шестерню 9, расположенную на оси 10, закрепленной в картере 1. Возможно изготовление промежуточной шестерни 9 совместно с коренным валом 11, установленным в опорах картера 1. Любой из валов 7 может выполнять функции коренного вала 11, при этом коренных валов 11 может быть несколько.
Синхронизирующая шестерня 12 (см. фиг.4, 6 и фиг.5) зацеплена с согласующими шестернями 8 валов 7 поршневых машин разной размерности. Цифры с одним штрихом вверху (8' и т.д.) принадлежат поршневой быстроходной машине малой размерности, цифры с двумя штрихами - поршневой тихоходной машине большой размерности.
Предлагаемая полушестеренно-реечная поршневая машина работает следующим образом.
1. Режим ДВС. На фиг.1 и 2 слева рабочий ход - сила от давления газов сгорающей рабочей смеси в левой части цилиндра 2 действует на левый поршень 4 и нижнее зацепление двусторонней зубчатой рейки 5, зубья которой взаимодействуют с зубьями нижней полушестерни 6, заставляя ее и нижний вал 7 (см. фиг.3) вращаться по часовой стрелке. От нижнего вала 7 шестерней 8, согласующей шестерней 9 усилие передается на шестерню 8 верхнего вала 7 и зафиксированные на нем полушестерни 6. В это время верхняя полушестерня 6 вращается так же по часовой стрелке вхолостую, так как на ее правом участке нет зубьев. Крутящий момент от нижней полушестерни 6 по нижнему валу 7 поступает на коренной вал 11. Коренной вал 11 передает энергию маховику (на схеме не показан), который обеспечивает привод исполнительных и вспомогательных механизмов, а также накапливает часть энергии для осуществления других тактов двигателя. Если двигатель четырехтактный, то в правой полости цилиндра 2 могут происходить или такт выпуска - вытеснения отработавших газов, или такт сжатия воздуха (дизели или бензиновые двигатели с непосредственным впрыском топлива) или сжатия рабочей смеси (карбюраторные или двигатели с централизованным или распределенным впрыском топлива во впускной коллектор). Когда правый поршень 4 достигнет ДКТ, то нижняя полушестерня 6 выходит из зацепления с нижним зацеплением двусторонней зубчатой рейки 5, в это время верхняя полушестерня 6 войдет в зацепление с верхним зацеплением двусторонней зубчатой рейки 5 и изменит направление ее движения.
На фиг.2 полушестерни 6 имеют переменный радиус R, а продольный профиль зубчатых зацеплений рейки 5 криволинейный. При постоянной - угловой скорости валов 7 и полушестерен 6 получим переменную линейную скорость V двусторонней зубчатой рейки 5 и поршней 4. V= R. На фиг.1 R=const.
2. Режим компрессора или насоса. Прикладывая крутящий момент к коренному валу 11, согласующими шестернями 8, валами 7 и полушестернями 6 приводим в движение двустороннюю зубчатую рейку 5 и поршни 4. Если зубья нижней полушестерни 6 войдут в зацепление с нижним зацеплением двусторонней зубчатой рейки 5, то она перемещает рейку из левого положения в правое (см. фиг.1 и 2). В правой половине - для компрессора сжатие воздуха (газа) или для насоса вытеснение жидкости, в левой половине - впуск (всасывание) воздуха (газа) или наполнение жидкостью. Когда нижняя полушестерня 6 выходит из зацепления с рейкой 5, в зацепление входит верхняя полушестерня 6, усилие передается на верхний ряд зубьев рейки 5, которая перемещает поршни 4 из правого положения в левое. В левой половине - сжатие воздуха (газа) или вытеснение жидкости, в правой половине - впуск (всасывание) воздуха (газа) или наполнение жидкостью.
Полушестеренно-реечная поршневая машина может быть как одноцилиндровая (однопоршневая), так и многоцилиндровая. Компоновка машины позволяет использовать один цилиндр для установки двух оппозитно расположенных поршней. Применение многоцилиндровых двигателей позволит получить ДВС большой мощности, при этом произойдет лучшее уравновешивание работы двигателя и потребуется маховик меньшей относительной массы. Многоцилиндровые многоступенчатые компрессоры с последовательным увеличением давления газа можно получить не только за счет количества шестерен и взаимосвязанных с ними зубчатых реек и поршней, но также путем установки ступенчатых поршней.
Возможно использование многоцилиндровой поршневой машины с цилиндрами разной размерности и быстроходности. На фиг.4, б цилиндры малой размерности и высокой быстроходности расположены вверху, а цилиндры большой размерности тихоходной поршневой машины расположены внизу. Нижний вал 7' согласующей шестерней 8' взаимодействует с синхронизирующей шестерней 12, зафиксированной на верхнем валу 7''. Валы 7' и 7'' могут взаимодействовать через несколько шестерен 12.
При продольной компоновке многоцилиндровой поршневой машины с цилиндрами разной размерности и быстроходности двусторонняя зубчатая рейка 5' быстроходной части поочередно взаимодействует с полушестернями 6', которые валами 7' и согласующими шестернями 8'', синхронизирующими шестернями 12 (см. фиг.5, а зацепление шестерен 8' и 12 показано условно) крутящий момент передается на валы 7'', далее на полушестерни 6'' и двустороннюю зубчатую рейку 5'' тихоходной части поршневой машины.
Можно скомпоновать ДВС разной быстроходности, ДВС и компрессор, ДВС и насос. Для ДВС целесообразно между валами 7' и 7'' использовать зубчатую передачу с передаточным числом приблизительно 2. Например, номинальная частота вращения быстроходной части ДВС равна 4000 об/мин, а тихоходной - 2000 об/мин (На фиг.4, б передаточное число примерно 1,5). При такой компоновке ДВС быстроходную часть можно использовать как пусковой двигатель (муфта отключения не показана), а также как дополнительный источник мощности при тяжелых условиях работы - больших нагрузках.
Класс F01B9/06 с криволинейными поверхностями для передачи движения поршней