направляющая или рабочая лопатка для осевого компрессора
Классы МПК: | F04D29/32 с осевым потоком |
Автор(ы): | ЛИ Ян Шенг (GB) |
Патентообладатель(и): | СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (DE) |
Приоритеты: |
подача заявки:
2009-04-03 публикация патента:
20.09.2013 |
Направляющая лопатка компрессора или рабочая лопатка осевого компрессора с осевым направлением, радиальным направлением (R), ступицей компрессора и корпусом компрессора. Направляющая лопатка или рабочая лопатка содержит аэродинамическую поверхность (1) с профильными сечениями (3, 5, 15А-15Е), имеющую размах, линию изгиба и переднюю кромку (7), на которой линия изгиба заключает с осевым направлением компрессора угол передней кромки лопатки. На задней кромке линия изгиба заключает с осевым направлением (A) компрессора угол задней кромки. Профильные сечения (3, 5, 15A-15E) аэродинамической поверхности лопатки расположены одно поверх другого на передней кромке (7) по прямой линии, проходящей в радиальном направлении (R) компрессора от ступицы компрессора к корпусу компрессора. Углы передней кромки профильных сечений аэродинамической поверхности изменяются вдоль размаха и больше для профильных сечений аэродинамической поверхности вблизи ступицы и вблизи стенки, чем для профильных сечений аэродинамической поверхности в середине размаха. Достигается снижение пространственных потерь и повышение запаса устойчивости при адекватном запасе прочности. 2 н. и 16 з.п. ф-лы, 7 ил.
Формула изобретения
1. Направляющая лопатка (31) статора или рабочая лопатка (25) ротора осевого компрессора с осевым направлением (A), радиальным направлением (R), ступицей компрессора и корпусом компрессора, при этом направляющая лопатка или рабочая лопатка содержит аэродинамическую поверхность (1) с профильными сечениями (3, 5, 15А-15Е), имеющую размах, линию изгиба (19), а также переднюю кромку (7), на которой линия изгиба (19) заключает с осевым направлением (A) компрессора угол ( ) передней кромки лопатки, и заднюю кромку (9), на которой линия изгиба (19) заключает с осевым направлением (A) компрессора угол ( ) задней кромки, отличающаяся тем,
что профильные сечения (3, 5, 15А-15Е) аэродинамической поверхности расположены одно поверх другого на передней кромке (7) по прямой линии, проходящей в радиальном направлении (R) компрессора от ступицы компрессора к корпусу компрессора, и
что углы ( ) передней кромки профильных сечений аэродинамической поверхности изменяются вдоль размаха, а углы ( ) передней кромки больше для профильных сечений аэродинамической поверхности вблизи ступицы и вблизи корпуса, чем для профильных сечений аэродинамической поверхности в середине размаха.
2. Направляющая лопатка (31) статора или рабочая лопатка (25) ротора по п.1, отличающаяся тем, что углы ( ) передней кромки профильных сечений (3, 5, 15А-15Е) аэродинамической поверхности наибольшие по направлению к корпусу.
3. Направляющая лопатка (31) статора или рабочая лопатка (25) ротора по п.1, отличающаяся тем, что увеличение углов ( ) передней кромки профильных сечений (3, 5, 15А-15Е) аэродинамической поверхности относительно профильных сечений (15С, 15D) аэродинамической поверхности в середине размаха наибольшее по направлению к корпусу.
4. Направляющая лопатка (31) статора или рабочая лопатка (25) ротора по п.2, отличающаяся тем, что увеличение углов ( ) передней кромки профильных сечений (3, 5, 15A-15E) аэродинамической поверхности относительно профильных сечений (15С, 15D) аэродинамической поверхности в середине размаха наибольшее по направлению к корпусу.
5. Направляющая лопатка (31) статора или рабочая лопатка (25) ротора по одному из пп.1-4, отличающаяся тем, что углы ( ) задней кромки профильных сечений (3, 5, 15А-15Е) аэродинамической поверхности изменяются вдоль размаха, а углы ( ) задней кромки больше для профильных сечений аэродинамической поверхности вблизи ступицы и/или вблизи корпуса, чем для профильных сечений (15С, 15D) аэродинамической поверхности в середине размаха.
6. Направляющая лопатка (31) статора по п.5, отличающаяся тем, что изменение углов ( ) задней кромки профильных сечений (3, 5, 15А-15Е) аэродинамической поверхности меньшее, чем изменение углов ( ) передней кромки профильных сечений (3, 5, 15A-15Е) аэродинамической поверхности.
7. Направляющая лопатка (31) статора по п.5, отличающаяся тем, что углы ( ) задней кромки профильных сечений (3, 5, 15А-15Е) аэродинамической поверхности наибольшие по направлению к корпусу.
8. Направляющая лопатка (31) статора по п.6, отличающаяся тем, что углы ( ) задней кромки профильных сечений (3, 5, 15A-15Е) аэродинамической поверхности наибольшие по направлению к корпусу.
9. Направляющая лопатка (31) статора по п.5, отличающаяся тем, что увеличение углов ( ) задней кромки профильных сечений (3, 5, 15А-15Е) аэродинамической поверхности относительно профильных сечений (15С, 15D) аэродинамической поверхности в середине размаха наибольшее по направлению к корпусу.
10. Направляющая лопатка (31) статора по п.6, отличающаяся тем, что увеличение углов ( ) задней кромки профильных сечений (3, 5, 15А-15E) аэродинамической поверхности относительно профильных сечений (15С, 15D) аэродинамической поверхности в середине размаха наибольшее по направлению к корпусу.
11. Направляющая лопатка (31) статора по п.7, отличающаяся тем, что увеличение углов ( ) задней кромки профильных сечений (3, 5, 15A-15E) аэродинамической поверхности относительно профильных сечений (15С, 15D) аэродинамической поверхности в середине размаха наибольшее по направлению к корпусу.
12. Направляющая лопатка (31) статора по п.8, отличающаяся тем, что увеличение углов ( ) задней кромки профильных сечений (3, 5, 15A-15E) аэродинамической поверхности относительно профильных сечений (15С, 15D) аэродинамической поверхности в середине размаха наибольшее по направлению к корпусу.
13. Направляющая лопатка (31) статора или рабочая лопатка (25) ротора по одному из пп.1-4 и 6-12, отличающаяся тем, что минимальная величина углов ( ) передней кромки профильных сечений (3, 5, 15A-15E) аэродинамической поверхности направляющих лопаток (31) статора (31), или рабочих лопаток (25) ротора, и/или углов ( ) задней кромки профильных сечений (3, 5, 15А-15Е) аэродинамической поверхности направляющих лопаток (31) статора находится между 30% и 70% размаха аэродинамической поверхности (1).
14. Направляющая лопатка (31) статора или рабочая лопатка (25) ротора по п.5, отличающаяся тем, что минимальная величина углов ( ) передней кромки профильных сечений (3, 5, 15A-15E) аэродинамической поверхности направляющих лопаток (31) статора (31), или рабочих лопаток (25) ротора, и/или углов ( ) задней кромки профильных сечений (3, 5, 15А-15Е) аэродинамической поверхности направляющих лопаток (31) статора находится между 30% и 70% размаха аэродинамической поверхности (1).
15. Направляющая лопатка (31) статора или рабочая лопатка (25) ротора по одному из пп.1-4, 6-12 и 14, отличающаяся тем, что задняя кромка (9) изогнута.
16. Направляющая лопатка (31) статора или рабочая лопатка (25) ротора по п.5, отличающаяся тем, что задняя кромка (9) изогнута.
17. Направляющая лопатка (31) статора или рабочая лопатка (25) ротора по п.13, отличающаяся тем, что задняя кромка (9) изогнута.
18. Осевой компрессор, содержащий рабочие и/или направляющие лопатки по одному из пп.1-17.
Описание изобретения к патенту
Заявленное изобретение относится к направляющим или рабочим лопаткам для осевых компрессоров, а также к осевому компрессору.
Снижение пространственных потерь и повышение коэффициента полезного действия и запаса устойчивости осевых компрессоров по сей день остаются техническими проблемами в области разработки рабочих и направляющих лопаток компрессора. Пространственные потери ограничивают потенциал роста давления компрессора. Такие потери являются, например, следствием отрыва потока на спинке, углах торцевой стенки, протекания через радиальные зазоры, и в областях вторичного течения. Оптимизация коэффициента полезного действия и запаса устойчивости всегда предполагают компромисс, так как увеличение кпд, как правило, снижает запас устойчивости, а повышение запаса устойчивости обычно приводит к снижению кпд.
Имеются многочисленные документы, в которых описываются пути уменьшения пространственных потерь и повышения кпд и запаса устойчивости.
Осевые компрессоры с торцевыми изгибами были предложены в публикациях Robinson et al., ASME 89-GT-6 , D. Wisler, ASME journal of engineering for gas turbine and power, volume 107, April 1985, и R. F. Behlke, ASME 85-IGT-9 с целью повышения рабочих характеристик осевых компрессоров. Изогнутые направляющие лопатки статора были предложены H. Weingold et al., ASME 95-GT-380 для снижения потерь в торцевой стенке статора компрессора. S. Gallimore et al., ASME GT-2002-30328 , а также S. Gallimore et al., ASME GT-2002-30329 предложили использование стреловидного профиля поверхностей и поперечного в многоступенчатых осевых компрессорах с целью устранения вышеназванных проблем.
В европейской патентной публикации ЕР 0441097 В1 описывается лопатка компрессора с изогнутыми передней и задней кромками для уменьшения аэродинамических потерь.
Направляющая лопатка статора компрессора с узким пером между хвостовиком и передним концом раскрыта в публикации ЕР 098092 А2. Лопатка также может быть изогнута в ее задней кромке во взаимодействии с узким пером.
В публикациях ЕР 0704602 В1 и ЕР 1259711 В1 описаны лопатки, включающие переднюю кромку со стреловидным профилем и прямую заднюю кромку.
В ЕР 0833060 В1 описана рабочая лопатка для осевого компрессора, в которой передняя кромка выполнена изогнутой и с волнообразным профилем и изогнутая задняя кромка.
В ЕР 1505302 А1 описана компрессорная лопатка с изогнутой, по меньшей мере, передней кромкой.
Патентный документ US 6299412 В1 описывает изогнутые лопатки компрессора.
Относительно вышеуказанного уровня техники первая задача заявленного изобретения состоит в том, чтобы предложить усовершенствованную рабочую или направляющую лопатку компрессора. Вторая задача заявленного изобретения заключается в том, чтобы предложить усовершенствованный осевой компрессор.
Первая задача решается за счет рабочей или направляющей компрессорной лопатки по признакам пункта 1 формулы изобретения. Вторая задача решается за счет осевого компрессора по признакам пункта 7 формулы изобретения. Зависимые пункты содержат другие аспекты развития изобретения.
Заявленная направляющая или рабочая компрессорная лопатка для осевого компрессора с осевым направлением, радиальным направлением, ступицей компрессора и корпусом компрессора содержит аэродинамическую поверхность, имеющую профильные сечения аэродинамической поверхности с размахом, линией изгиба и передней кромкой, в которой линия изгиба заключает с осевым направлением компрессора угол передней кромки лопатки, и задней кромкой, в которой линия изгиба заключает с осевым направлением компрессора угол задней кромки рабочей лопатки. Профильные сечения аэродинамической поверхности расположены одно поверх другого на передней кромке по прямой линии, проходящей в радиальном направлении компрессора от ступицы компрессора к корпусу компрессора. Кроме того, углы передней кромки профильных сечений аэродинамической поверхности изменяются вдоль размаху и углы передней кромки больше для профильных сечений аэродинамической поверхности вблизи ступицы (0% размаха) и вблизи корпуса (100% размаха), чем для профильных сечений аэродинамической поверхности в середине размаха. В частности, углы передней кромки рабочей лопатки могут быть на 10° больше для профильных сечений аэродинамической поверхности вблизи ступицы и на 18° больше для профильных сечений аэродинамической поверхности вблизи корпуса, чем для профильных сечений аэродинамической поверхности в середине размаха.
В предлагаемом изобретении был использован код 3D CFD (пространственной вычислительной динамики жидкостей и газов) для установки параметров углов передней кромки и задней кромки рабочей лопатки. Код также был использован, чтобы подогнать форму аэродинамической поверхности лопатки и взаимное расположение профильных сечений аэродинамической поверхности. Таким образом потери были минимизированы и улучшен спектр потока. Увеличенные углы передней кромки лопатки вблизи ступицы и вблизи корпуса компрессора помогают снизить большие положительные углы атаки, вызванные вязким пространственным потоком в этих зонах и, следовательно, помогают уменьшить толщину пограничного слоя на поверхности лопатки и отрыв потока в направлении задней кромки лопатки. Увеличенные углы рабочей лопатки и уменьшенные углы атаки также помогают снизить протекание через радиальные зазоры в области корпуса рабочих лопаток ротора и в области ступицы консольных направляющих лопаток статора. Уменьшенные углы передней кромки лопаток в зоне в середине размаха помогают поддерживать адекватный запас ударной прочности. Кроме того, наслоение профильных сечений на передней кромке вдоль радиальной прямой помогает создать более сложный (изогнутый) уклон к задней кромке с корытцем, обращенным к ступице и корпусу. Это помогает ослабить нагрузку на лопатку в зонах торцевой стенки и, следовательно, снизить протекание через радиальные зазоры там, где они имеется, и сократить отрывы потока в спинке и углах торцевой стенки, и это помогает снизить пространственные потери и повысить запас устойчивости компрессора.
Заявленная направляющая лопатка может также содержать заднюю кромку, в которой углы задней кромки профиля аэродинамической поверхности изменяются и углы задней кромки больше для профильных сечений аэродинамической поверхности вблизи ступицы и/или вблизи корпуса, чем для профильных сечений аэродинамической поверхности в середине размаха. Изменение углов задней кромки профильных сечений аэродинамической поверхности может быть меньшим, чем изменение углов передней кромки профильных сечений аэродинамической поверхности. В частности, углы задней кромки лопатки могут быть на 5° больше для профильных сечений аэродинамической поверхности вблизи ступицы и на 10° больше для профильных сечений аэродинамической поверхности вблизи корпуса, чем для профильных сечений аэродинамической поверхности в середине размаха.
Профиль упомянутого угла задней кромки помогает ослабить местную нагрузку рабочей или направляющей лопатки и, следовательно, помогает уменьшить отрыв потока в угле торцевой стенки горбушки в зонах торцевой стенкирабочей или направляющей лопатки, то есть в зоне ступицы или зоне корпуса.
Для консольных направляющих лопаток статора углы задней кромки лопатки в зоне ступицы могут быть взяты аналогичными обычным направляющим лопаткам статора, так как протекание через радиальные зазоры помогает ослабить нагрузку в этих зонах. Кроме того, углы задней кромки рабочих лопаток ротора в зоне корпуса могут быть взяты аналогичными обычному профилю, так как также в этом случае протекание через радиальные зазоры помогает облегчить нагрузку в зонах корпуса.
Углы задней кромки лопатки в зоне середины размаха могут быть взяты аналогичными обычным профилям, если изменение угла задней кромки лопатки относительно обычного профиля мало в зонах торцевой стенки, или уменьшенными, если углы задней кромки лопатки увеличены в зонах торцевой стенки.
Особенно выгодно, если углы передней кромки лопатки и/или углы задней кромки лопатки профильных сечений аэродинамической поверхности являются наибольшими по направлению к корпусу. Более того, увеличение углов в передней кромке лопатки и/или углов в задней кромке лопатки профильных сечений аэродинамической поверхности относительно профильных сечений аэродинамической поверхности в середине размаха является преимущественно наибольшим по направлению к корпусу. Минимальная величина углов передней кромки лопатки и/или углов задней кромки лопатки профильных сечений аэродинамической поверхности может, в частности, находиться между 30% и 70% размаха аэродинамической поверхности. В специальном варианте осуществления заявленной направляющей или рабочей лопатки задняя кромка изогнута.
Раскрытые мероприятия обработки углов задней кромки лопатки в зоне середины размаха помогают поддерживать полную нагрузку рабочих или направляющих лопаток относительно обычных рабочих или направляющих лопаток.
Заявленный осевой компрессор содержит заявленные рабочие и/или направляющие лопатки. С заявленными рабочими и/или направляющими лопатками рабочие характеристики компрессора могут быть улучшены благодаря уменьшенным пространственным потерям, увеличенному коэффициенту полезного действия и увеличенному запасу устойчивости.
Другие особенности, свойства и преимущества предлагаемого изобретения поясняются нижеследующим описанием вариантов осуществления в сочетании с прилагаемыми чертежами, на которых показаны:
Фиг.1 - заявленная аэродинамическая поверхность в объемном изображении,
Фиг.2 - параметры аэродинамической поверхности с фиг.1, существенные для понимания изобретения,
Фиг.3 - три профильных сечения аэродинамической поверхности с фиг.1, взятые по осевому направлению компрессора,
Фиг.4 - распределение угла передней кромки лопатки и угла задней кромки лопатки заявленной аэродинамической поверхности вдоль соответствующего размаха в сравнении с распределением угла передней кромки лопатки обычной аэродинамической поверхности,
Фиг.5 - сравнение между заявленной аэродинамической поверхностью и аэродинамической поверхностью согласно уровню техники,
Фиг.6 - заявленная рабочая лопатка компрессора с использованием заявленной аэродинамической поверхности и
Фиг.7 - заявленная направляющая лопатка компрессора с использованием заявленной аэродинамической поверхности.
На фиг.1 показана в объемном изображении аэродинамическая поверхность с использованием особенностей изобретения. Изображенные на фиг.1 особенности могут быть использованы, в целом, как аэродинамические поверхности лопаток ротора компрессора, так и аэродинамические поверхности лопаток статора компрессора.
Аэродинамическая поверхность 1 содержит профильное сечение 3 ступицы, которая направлена в сторону ротора, если аэродинамическая поверхность включена в компрессор, и профильное сечение 5 корпуса, которое направлено в сторону корпуса компрессора, если аэродинамическая поверхность 1 включена в компрессор. Далее она включает переднюю кромку 7 и заднюю кромку 9, которые проходят от профильного сечения 3 ступицы к профильному сечению 5 корпуса. В то время как передняя кромка расположена по прямой линии, проходящей в радиальном направлении R компрессора, задняя кромка 9 изогнута относительно радиального направления компрессора. Кроме того, задняя кромка 9 может быть также изогнута относительно осевого направления компрессора. Между передней кромкой 7 и задней кромкой 9 проходит корытце 11 и спинка 13, которые служат для передачи количества движения на аэродинамическую поверхность, в случае если аэродинамическая поверхность является частью подвижной лопатки ротора, или на воздушный поток, если аэродинамическая поверхность является частью лопатки статора.
На фиг.1 показаны также воображаемые профильные сечения аэродинамической поверхности 15А-15Е, которые применяются для определения профиля аэродинамической поверхности. В любом случае, эти профильные сечения аэродинамической поверхности составляют лишь часть процесса формирования профиля и применяются для определения профиля, не будучи отдельными элементами в реальной аэродинамической поверхности.
Некоторые параметры, которые важны для описания профиля заявленной аэродинамической поверхности, описаны со ссылкой на фиг.2, на которой показано сечение по профильному сечению аэродинамической поверхности 1 в середине размаха в осевом направлении компрессора, то есть перпендикулярно размаху аэродинамической поверхности. На фигуре показана хорда 17, которая представляет собой воображаемую прямую линию, соединяющую переднюю кромку 7 с задней кромкой 9. Другая воображаемая линия, соединяющая переднюю кромку 7 и заднюю кромку 9 это линия изгиба 19, которая проходит посредине между корытцем 11 и спинкой 13. Угол передней кромки определяют как угол между осевым направлением А компрессора и касательной 21 линии изгиба 19 к передней кромке 7. Подобным образом, угол задней кромки представляет собой угол между осевым направлением А и касательной 23 линии изгиба 19 к задней кромке 9.
В заявленной аэродинамической поверхности угол передней кромки изменяется вдоль размаха аэродинамической поверхности, как это показано на фиг.3 и 4. На фиг.3 показан вид в разрезе в осевом направлении А трех профильных сечений аэродинамической поверхности с фиг.1, а именно части 3 ступицы аэродинамической поверхности, части 5 корпуса аэродинамической поверхности и части 15С аэродинамической поверхности, которая представляет собой профильное сечение аэродинамической поверхности в середине размаха.
Как можно видеть на фиг.1 и 3, профильные сечения 3, 5 и 15А-Е расположены одно поверх другого на передней кромке 7 по прямой линии, проходящей в радиальном направлении R. Как можно видеть также на фигурах, угол передней кромки рабочей лопатки изменяется вдоль размаха, также как и угол задней кромки.
Изменение угла передней кромки в аэродинамической поверхности вдоль размаха показано на фиг.4 штриховой линией. Для сравнения, угол передней кромки вдоль размаха также показан для обычной аэродинамической поверхности (сплошная линия). Можно видеть, что в сравнении с обычной аэродинамической поверхностью угол передней кромки заявленной аэродинамической поверхности изменяется больше, чем угол передней кромки обычной аэродинамической поверхности. Не только углы передней кромки заявленной аэродинамической поверхности больше, чем в обычной аэродинамической поверхности, вблизи ступицы и вблизи корпуса, но также угол передней кромки меньше, чем в обычной аэродинамической поверхности в частях в середине размаха. Если угол задней кромки заявленной лопатки изменяется, он может изменяться, как показано на фиг.4, штрихпунктирной линией. Обычно изменение угла задней кромки бывает меньшим, чем изменение угла передней кромки относительно обычного профиля. Это, в частности, относится к рабочей лопатке ротора. Однако для заявленной лопатки статора величина изменения угла задней кромки лопатки относительно обычного профиля может быть аналогичной для углов передней кромки. Штрихпунктирная линия показывает изменение, в котором угол задней кромки является наименьшим в зоне в середине размаха аэродинамической поверхности. Тем не менее изменение угла задней кромки может также соответствовать более или менее изменению обычной аэродинамической поверхности, то есть угол задней кромки на части ступицы может быть меньше, чем углы задней кромки в частях в середине размаха, в частности, для рабочих лопаток ротора.
Сравнение углов , ' передней кромки и углов , ' задней кромки заявленной аэродинамической поверхности и обычной аэродинамической поверхности для частей корпуса аэродинамической поверхности показано на фиг.5. Также на фигуре показано направление притока I и оттока O воздуха, который подвергается сжатию. Как можно видеть на фиг.5, угол передней кромки и угол задней кромки заявленной аэродинамической поверхности больше, чем соответственно угол ' передней кромки и угол ' задней кромки обычной аэродинамической поверхности. Аналогичный график может быть получен при сравнении между частями ступицы заявленной аэродинамической поверхности и обычной аэродинамической поверхности. Увеличенные углы передней кромки рабочей лопатки в частях ступицы и корпуса помогают снизить большие положительные углы атаки, вызванные вязким пространственным потоком в этих областях. Эти меры позволяют уменьшить толщину пограничного слоя на поверхности лопатки и отрыв потока в направлении задней кромки лопатки. Кроме того, увеличенные углы рабочей лопатки и уменьшенные углы атаки также помогают снизить протекание через радиальные зазоры в области корпуса рабочих лопаток ротора и в области ступицы консольных направляющих лопаток статора. Уменьшенные углы передней кромки рабочей лопатки, если сравнивать с обычными рабочими лопатками ротора, в зоне в середине размаха помогают поддерживать адекватный запас ударной прочности.
На фиг.6 показан пример для заявленной рабочей лопатки ротора с вышеописанной аэродинамической поверхностью. Рабочая лопатка 25 ротора содержит аэродинамическую поверхность 1' согласно изобретению, хвостовик 27 и платформу 29, расположенную между аэродинамической поверхностью 1' и хвостовиком 27. Как можно видеть, профильные сечения аэродинамической поверхности рабочей лопатки расположены одно поверх другого на прямой передней кромке. Кроме того, задняя кромка 9' имеет лишь небольшое изменение в радиальном направлении. Фактически угол задней кромки взят аналогичным углам задней кромки профиля обычной рабочей лопатки ротора, если отсутствует отрыв потока. С другой стороны, если имеет место отрыв потока в направлении задней кромки в зоне ступицы ротора и корпуса ротора, то углы задней кромки в этих зонах могут быть увеличены. В зоне в середине размаха углы задней кромки лопатки могут быть взяты аналогичными обычным профилям, если имеет место небольшое изменение в частях ступицы и корпуса. С другой стороны, если углы задней кромки лопатки увеличены в зонах торцевой стенки, то есть в зоне ступицы и в зоне корпуса, то углы задней кромки могут быть уменьшены относительно углов задней кромки обычных профилей в зонах в середине размаха. Однако, даже если угол задней кромки лопатки 25 изменяется, то он изменяется не настолько как углы передней кромки лопатки относительно обычного профиля.
Заявленная направляющая лопатка статора показана на фиг.7. Она содержит аэродинамическую поверхность 1 , в соответствии с изобретением, с прямой передней кромкой 7 , проходящей в радиальном направлении, и изогнутой задней кромкой 9 , хвостовиком 33 и платформой 35, расположенной между аэродинамической поверхностью 1 и хвостовиком 33. Направляющая лопатка статора, показанная на фиг.7, представляет собой консольную направляющую лопатку статора. Как можно легко видеть на фиг.7, передняя кромка 7 аэродинамической поверхности 1 проходит по прямой линии в радиальном направлении, между тем как задняя кромка 9 изогнута. Следует отметить, что изобретение относится также к бандажированной направляющей лопатке статора, которая здесь не показана.
Углы задней кромки консольной направляющей лопатки статора на фиг.7 могут быть взяты аналогичными углам задней кромки обычного профиля направляющей лопатки статора, если отсутствует местный отрыв потока, или увеличенными, если имеют место отрывы потока в направлении задней кромки в зоне ступицы или в зоне корпуса. В случае бандажированных направляющих лопаток статора углы задней кромки лопатки могут быть взяты аналогичными углам задней кромки обычного профиля лопатки в направлении ступицы и корпуса, если отсутствует местный отрыв потока, или увеличенными, если имеют место отрывы потока в направлении задней кромки в зоне ступицы или в зоне корпуса. Также как в случае рабочих лопаток ротора, углы задней кромки лопатки могут быть аналогичными обычным профилям в зоне в середине размаха, если имеют место небольшое изменение углов задней кромки лопатки в зоне ступицы или в зоне корпуса, или уменьшенными, если углы задней кромки лопатки увеличены в зоне ступицы и/или в зоне корпуса.
Следует обратить внимание, что в контексте настоящего изобретения аэродинамические поверхности компрессора могут иметь любую форму профиля, например с контролируемой диффузией, двойной чечевицеобразный профиль (DCA), С4 и т.д.
Заявленный профиль аэродинамической поверхности для рабочих и направляющих лопаток статора компрессора, как описано выше, помогает снизить пространственные потери и повысить коэффициент полезного действия и запас устойчивости осевых компрессоров, при этом по существу без увеличения нагрузки на рабочие или направляющие лопатки.
Класс F04D29/32 с осевым потоком