способ измерения сопротивления изоляции цепей постоянного тока, находящихся под рабочим напряжением, и устройство для его реализации
Классы МПК: | G01R27/18 для измерения сопротивления на землю |
Автор(ы): | Прищепа Василий Степанович (RU), Вербовой Юрий Сергеевич (RU) |
Патентообладатель(и): | ООО "НПП "ЮГПРОМАВТОМАТИЗАЦИЯ" (RU) |
Приоритеты: |
подача заявки:
2012-04-12 публикация патента:
20.10.2013 |
Группа изобретений относится к электроизмерительной технике и предназначена для использования в автоматизированных системах контроля, диагностики и управления технологическими процессами. Между одним из полюсов контролируемой цепи и шиной заземления подключают измерительную цепь, содержащую управляемый дополнительный источник постоянного тока формирующий однополярное двухступенчатое напряжение, при этом, с целью снижения измерительного напряжения дополнительного источника, с цепью заземления соединяют полюс дополнительного источника одноименный с подключенным полюсом контролируемой цепи. Устройство содержит измерительную цепь, включенную между одним из полюсов контролируемой цепи и шиной заземления и состоящую из управляемого дополнительного источника постоянного тока, ограничительных резисторов и токового шунта, микропроцессорный элемент, прецизионный элемент стабилизации напряжения питания аналоговой части микропроцессорного элемента, блок передачи измерительной информации, при этом, параллельно токовому шунту, подключена цепь из последовательно соединенных масштабирующих операционных усилителей, а параллельно дополнительному источнику подключен еще один операционный усилитель с делителем напряжения на входе, выходы операционных усилителей соединены с входами аналого-цифрового преобразования микропроцессорного элемента, а выход микропроцессорного элемента, управляющий дополнительным источником, имеет функцию широтно-импульсной модуляции. Технический результат заключается в повышении точности и достоверности измерений. 2 н.п. ф-лы, 1 ил.
Формула изобретения
1. Способ измерения сопротивления изоляции двухпроводных цепей постоянного тока, находящихся под напряжением, при подключении к одному проводу, в соответствии с которым между одним из полюсов контролируемой цепи и шиной заземления подключают измерительную цепь, содержащую управляемый дополнительный источник постоянного тока, ограничительные резисторы и токовый шунт, при этом с целью снижения измерительного напряжения дополнительного источника с цепью заземления соединяют полюс дополнительного источника, одноименный с полюсом контролируемой цепи, производят измерение напряжения источника и тока в его цепи, усредняя их по n измерениям в интервале, кратном периоду наиболее вероятной помехи, затем повышают напряжение и вновь производят те же измерения, общее сопротивление изоляции контролируемой цепи вычисляют по формуле где: U1, U2 - усредненные значения напряжения дополнительного источника на первом и втором этапах измерения; I2, I1 - соответствующие токи в измерительной цепи; R0 - суммарное сопротивление измерительной цепи.
2. Устройство измерения сопротивления изоляции цепей постоянного тока по предложенному способу, содержащее измерительную цепь, включенную между одним из полюсов контролируемой цепи и шиной заземления и состоящую из управляемого дополнительного источника постоянного тока, ограничительных резисторов и токового шунта, микропроцессорный элемент, выход которого подключен к управляемому им дополнительному источнику, прецизионный элемент стабилизации напряжения питания аналоговой части микропроцессорного элемента, при этом параллельно токовому шунту подключена цепь из последовательно соединенных масштабирующих операционных усилителей для образования поддиапазонов измерения, а параллельно дополнительному источнику подключен еще один операционный усилитель с делителем напряжения на входе, выходы операционных усилителей соединены с входами аналого-цифрового преобразования микропроцессорного элемента, который, в свою очередь, подключен к блоку последовательного интерфейса для передачи измерительной информации, отличающееся тем, что выход микропроцессорного элемента, управляющего дополнительным источником, имеет функцию широтно-импульсной модуляции, а дополнительный источник напряжения содержит управляемый импульсный преобразователь с умножителем или выпрямителем напряжения на выходе, при этом с шиной заземления соединен его полюс, одноименный с подключенным полюсом контролируемой цепи.
Описание изобретения к патенту
Предлагаемые способ и устройство относятся к электроизмерительной технике и предназначены для использования преимущественно в автоматизированных системах контроля, диагностики и управления технологическими процессами.
Контроль изоляции и измерение ее сопротивления для гальванически изолированных от земли (корпуса) цепей были всегда актуальными задачами, особенно в таких отраслях как железнодорожная автоматика, судовая электрика, где подавляющее большинство электрических цепей гальванически изолировано от земли (корпуса).
Известен способ контроля электрического сопротивления изоляции и защитного отключения оборудования (заявка на изобретение RU 2009143048, G01R 27/18, опубликована 27.05.2011). В соответствии с данным способом дополнительный источник напряжения подключают к одному из полюсов контролируемой цепи, формируют измерительное напряжение в форме периодической последовательности импульсов с изменяющейся полярностью и по напряжению и току в цепи дополнительного источника в разных полупериодах его работы рассчитывают сопротивление изоляции и судят о допустимости его изменения.
Данный способ (и его формулы расчета) работоспособны только в предположении, что напряжение дополнительного источника превышает напряжение контролируемой цепи, поскольку в противном случае при их встречном включении (за счет изменения полярности дополнительного источника) ток, протекающий в цепи дополнительного источника, должен пройти в обратном направлении, что невозможно из-за того, что обычно источник постоянного тока содержит на выходе выпрямительный элемент. Во всяком случае, внутреннее сопротивление источника постоянного тока в обратном направлении гораздо больше его значения в прямом направлении. Расчет тока в цепи дополнительного источника для данного способа в цикле встречного включения показывает, что для исключения изменения направления тока должно выполняться условие:
где: U2 - напряжение дополнительного источника; U - напряжение контролируемой цепи; rT - внутреннее сопротивление дополнительного источника (в прямом направлении); R1 - сопротивление изоляции полюса, к которому подключен дополнительный источник; R2 - сопротивление изоляции второго полюса.
Таким образом, когда R1>>R2 (что вполне реально), напряжение дополнительного источника должно быть больше (или равно) напряжения контролируемой цепи.
Использование в устройствах измерения сопротивления изоляции достаточно высоковольтных источников постоянного тока по многим причинам не рационально. Во-первых, это проводит к значительному усложнению устройств, во-вторых, в периоде последовательного соединения дополнительного и контролируемого источников их напряжения уже суммируются, что может привести к недостоверным результатам измерения из-за срабатывания разрядников, которые устанавливаются для защиты цепей от грозовых и коммутационных перенапряжений.
Кроме этого, при наличии в цикле измерения встречного включения источников, существует достаточно актуальная проблема измерения общего сопротивления изоляции контролируемой линии без нагрузки (например, после переключения питания с основной линии на резервную). Эта проблема также связана с разным внутренним сопротивлением источников постоянного тока (теперь уже контролируемых) в прямом и обратном направлениях.
Наиболее близким к предлагаемому является способ контроля сопротивления изоляции и защиты сети постоянного тока от замыканий на землю (заявка на изобретение RU 2000106754, G01R 27/18, опубликована 27.02.2002). Способ основан на том, что к полюсам сети постоянного тока через одинаковые добавочные сопротивления подключают дополнительный источник специальной (двухступенчатой) формы, производят измерение установившихся значений напряжений полюсов сети относительно земли и тока в ветви дополнительного источника в первом и втором полупериодах его работы, определяют эквивалентное (общее) сопротивление изоляции полюсов относительно земли по приводимым формулам и сравнивают его с допустимым.
Все недостатки, указанные при рассмотрении первого способа присущи и данному, с учетом того, что дополнительный источник подключается к условной средней точке контролируемой цепи, образованной двумя добавочными сопротивлениями. Поэтому меньшее из напряжений дополнительного источника в предельных случаях должно быть больше половины напряжения контролируемой сети.
Целью предлагаемого изобретения является повышение достоверности и точности измерений, снижение напряжения дополнительного источника, что достигается применением известных технических решений предлагаемым способом.
Сущность предлагаемого технического решения заключается в способе измерения сопротивления изоляции двухпроводных цепей постоянного тока, находящихся под напряжением, при подключении к одному проводу, в соответствии с которым между одним из полюсов контролируемой цепи и шиной заземления подключают измерительную цепь, содержащую управляемый дополнительный источник постоянного тока, ограничительные резисторы и токовый шунт, при этом, с целью снижения измерительного напряжения дополнительного источника, с цепью заземления соединяют полюс дополнительного источника одноименный с полюсом контролируемой цепи, после определенной выдержки времени производят измерение напряжения источника и тока в его цепи, усредняя их по n измерениям в интервале, кратном периоду наиболее вероятной помехи, затем повышают напряжение и вновь после определенной выдержки производят те же измерения, общее сопротивление изоляции контролируемой цепи вычисляют по формуле:
где: U01, U02 - усредненные значения напряжения дополнительного источника на первом и втором этапах измерения; I01, I02 - соответствующие токи в измерительной цепи; Ro - суммарное сопротивление измерительной цепи, включающее ограничительный резистор, сопротивление шунта и внутреннее сопротивление дополнительного источника (в прямом направлении).
Для реализации предлагаемого способа измерения сопротивления изоляции цепей постоянного тока устройство содержит измерительную цепь, включенную между одним из полюсов контролируемой цепи и шиной заземления и состоящую из управляемого дополнительного источника постоянного тока, ограничительных резисторов и токового шунта, микропроцессорный элемент, выход которого подключен к управляемому им дополнительному источнику, прецизионный элемент стабилизации напряжения питания аналоговой части микропроцессорного элемента, при этом, параллельно токовому шунту, подключена цепь из последовательно соединенных масштабирующих операционных усилителей для образования поддиапазонов измерения, а параллельно дополнительному источнику подключен еще один операционный усилитель с делителем напряжения на входе, выходы операционных усилителей соединены с входами аналого-цифрового преобразования микропроцессорного элемента, который, в свою очередь, подключен к блоку последовательного интерфейса для передачи измерительной информации, и отличается тем, что выход микропроцессорного элемента управляющего дополнительным источником имеет функцию широтно-импульсной модуляции, а дополнительный источник напряжения содержит управляемый импульсный преобразователь с умножителем или выпрямителем напряжения на выходе, при этом, с шиной заземления соединен его полюс одноименный с подключенным полюсом контролируемой цепи.
Краткое описание чертежей
На фиг.1 приведена структурная схема устройства по предлагаемому способу для измерения сопротивления изоляции цепей постоянного тока, находящихся под рабочим напряжением, где: 1 - измерительная цепь; 2 - ограничительный резистор; 3 - токовый шунт; 4 - управляемый дополнительный источник постоянного тока; 5 - шина заземления; 6 - делитель напряжения; 7 - операционные усилители; 8 - микропроцессорный элемент; 9 - блок приема/передачи измерительной и диагностической информации; 10 - прецизионный элемент стабилизации напряжения; 11 - контролируемая цепь постоянного тока; R1, R2 - сопротивления изоляции первого и второго полюсов контролируемой цепи.
Устройство, представленное на фиг.1, работает под управлением микропроцессорного элемента по заложенной в него программе в соответствии с алгоритмами, указанными в предлагаемом способе, и производит вычисления по приведенным формулам. Расчетные формулы получены на основании закона Киргофа для точки (шина заземления) ветвления токов утечки через сопротивления изоляции (R1, R2) и сопротивление измерительной цепи (R0) и закона равенства напряжений на параллельно включенных участках:
На первом этапе измерения:
где: U - напряжение контролируемой цепи; I11, I21 - токи в цепях сопротивлений изоляции соответственно R1 и R2 на первом этапе измерения.
Аналогично, на втором этапе измерения получаем:
Вычитая (3) из (4), учитывая, что , и делая преобразования относительно Rиз, получаем формулу (2).
Способ снижения напряжения дополнительного источника постоянного напряжения использован в ООО НПП Югпромавтоматизация при разработке микромодуля ММСИ1П. Устройство, реализующее предлагаемый способ, изготовлено на печатной плате размером 30×80 мм, прошло комплекс испытаний и подтвердило хорошие метрологические характеристики.
Класс G01R27/18 для измерения сопротивления на землю