способ измерения сопротивления изоляции цепей постоянного тока, находящихся под рабочим напряжением, и устройство для его осуществления
Классы МПК: | G01R27/18 для измерения сопротивления на землю |
Автор(ы): | Прищепа Василий Степанович (RU), Вербовой Юрий Сергеевич (RU) |
Патентообладатель(и): | ООО "НПП "ЮГПРОМАТОМАТИЗАЦИЯ" (RU) |
Приоритеты: |
подача заявки:
2012-01-11 публикация патента:
10.01.2014 |
Способ измерения сопротивления изоляции цепей постоянного тока, находящихся под рабочим напряжением, и устройство для его осуществления относятся к электроизмерительной технике и предназначены для использования преимущественно в автоматизированных системах контроля, диагностики и управления технологическими процессами. Техническим результатом является повышение помехозащищенности и точности измерений, упрощение устройства, реализующего заявленный способ, а также расширение функциональных возможностей за счет реализации функции самодиагностики измерительных каналов и устройства в целом. Технический результат достигается устройством, осуществляющим способ, заключающийся в том, что в интервалах между измерениями сопротивления изоляции производят контроль измерительных каналов путем подключения входов первого измерительного канала к одной точке и определения среднего значения «нуля» после "n" измерений для учета в расчете напряжения, а затем подключения этих же входов к обоим полюсам контролируемой цепи для последующего вычисления отношения среднего (из "n") значения показаний второго канала к среднему значению показаний первого канала, при выходе рассчитанных показателей за пределы установленных порогов, делают вывод о нарушении функционирования измерительных каналов, а в противном случае последующее вычисление общего сопротивления изоляции производят по формуле:
Формула изобретения
1. Способ измерения сопротивления изоляции двухпроводных цепей постоянного тока, находящихся под рабочим напряжением, в соответствии с которым первым измерительным каналом с известным входным сопротивлением производят поочередное измерение напряжений между каждым полюсом контролируемой цепи и шиной заземления, вторым измерительным каналом одновременно измеряют напряжение контролируемой цепи, при этом после каждого подключения делают определенную выдержку времени для завершения переходных коммутационных процессов, в интервале, кратном периоду наиболее вероятной помехи, производят по "n" измерений с вычислением отношения напряжения на полюсе к напряжению контролируемой цепи, а общее сопротивление изоляции вычисляют по формуле:
где U01i - напряжение контролируемой цепи при i-м измерении и подключении к первому полюсу;
U02j - напряжение контролируемой цепи при j-м измерении и подключении к второму полюсу;
U1i, U 2j - соответствующие напряжения на первом и втором полюсах относительно цепи заземления;
R0 - входное сопротивление коммутируемого измерительного канала, причем сопротивление изоляции каждого полюса контролируемой цепи вычисляют по формулам:
2. Способ измерения сопротивления изоляции двухпроводных цепей постоянного тока, находящихся под рабочим напряжением, в соответствии с которым первым измерительным каналом с известным входным сопротивлением производят поочередное измерение напряжений между каждым полюсом контролируемой цепи и шиной заземления, вторым измерительным каналом одновременно измеряют напряжение контролируемой цепи, при этом после каждого подключения делают определенную выдержку времени для завершения переходных коммутационных процессов, в интервале, кратном периоду наиболее вероятной помехи производят по n измерений с вычислением отношения напряжения на полюсе к напряжению контролируемой цепи, при этом в интервалах между измерениями сопротивления изоляции контроль измерительных каналов путем подключения входов первого измерительного канала к одной точке (шине заземления) и определения среднего значения «нуля» после n измерений для учета в расчете напряжения, а затем подключения этих же входов к обоим полюсам контролируемой цепи для последующего вычисления отношения среднего (из n ) значения показаний второго канала к среднему значению показаний первого канала (k), при выходе рассчитанных показателей за пределы установленных порогов, делают вывод о нарушении функционирования измерительных каналов, а в противном случае последующее вычисление сопротивления изоляции производят по формуле:
где U01i- напряжение контролируемой цепи при i-м измерении и подключении к первому полюсу;
U02j- напряжение контролируемой цепи при j-м измерении и подключении к второму полюсу;
U1i , U2j - соответствующие напряжения на первом и втором полюсах относительно цепи заземления;
R0 - входное сопротивление коммутируемого измерительного канала, причем сопротивление изоляции каждого полюса контролируемой цепи вычисляют по формулам:
3. Устройство измерения сопротивления изоляции двухпроводных цепей постоянного тока по предложенному способу, содержащее микропроцессорный элемент, к входам/выходам последовательного интерфейса которого подключен блок приема/передачи измерительной и диагностической информации, к входу питания аналоговой части - прецизионный элемент стабилизации напряжения, к входам аналого-цифрового преобразования - выходы двух измерительных каналов, а два выхода соединены с входами узла коммутации, средние точки двух независимых групп переключающих контактов исполнительных элементов которых подключены к дифференциальным входам первого измерительного канала, по одному контакту из группы соединено с шиной заземления, а другие подключены к полюсам контролируемой цепи, с которыми соединены и дифференциальные входы второго измерительного канала.
Описание изобретения к патенту
Предлагаемые способ и устройство относятся к электроизмерительной технике и предназначены для использования преимущественно в автоматизированных системах контроля, диагностики и управления технологическими процессами.
Контроль изоляции и измерение ее сопротивления для гальванически изолированных от земли (корпуса) цепей были всегда актуальными задачами, особенно в таких отраслях как железнодорожная автоматика, судовая электрика, где подавляющее большинство электрических цепей гальванически изолировано от земли (корпуса).
Известен способ и устройство измерения и контроля сопротивления изоляции изолированных от земли силовых электрических сетей постоянного тока под рабочим напряжением (патент на изобретение RU 2403580 G01R27/18, опубликован 10.11.2010). В соответствии с данным способом к одному из полюсов контролируемой сети подключают регулируемый резистор и изменяют его так, чтобы напряжение на полюсе уменьшилось ровно в два раза по сравнению с величиной напряжения этого полюса относительно земли до шунтирования, при этом, устройство содержит управляемую ключами декодирующую резистивную матрицу, компараторы, реле, устройства выборки и хранения аналоговых сигналов, омметр и т.д. Таким образом, данный способ очень сложен в реализации.
Наиболее близким к предлагаемому является способ определения сопротивления изоляции электрических сетей (патент на изобретение RU 2044324, G01R27/18, опубликован 20.09.1995). Способ основан на поочередном шунтировании резистором полюсов сети, последовательном измерении на нем мгновенных значений напряжений, определении окончания переходных процессов в общем случае по разности между смежными измерениями и вычислении сопротивления изоляции по предложенной формуле, принимая значение последнего измерения мгновенного значения напряжения за установившееся. Данный способ безусловно применим к идеальным линиям постоянного тока без различного вида помех, однако в реальных линиях обязательно присутствуют пульсации выпрямленного напряжения, наводки от проходящих в совместных жгутах цепей переменного тока, коммутационные и другие наведенные помехи. Таким образом, при реализации данного способа с порогами ниже уровня помех на контролируемой линии постоянного тока, определение окончания процесса измерения может никогда не завершиться, а при порогах выше уровня помех - положительный эффект от применения данного способа сводится на нет.
Целью предлагаемого изобретения является повышение точности и помехозащищенности измерений, упрощение устройства, реализующего способ, а также расширение функциональных возможностей за счет реализации функции самодиагностики измерительных каналов и устройства в целом.
Сущность предлагаемого технического решения заключается в способе измерения сопротивления изоляции двухпроводных цепей постоянного тока, находящихся под напряжением, в соответствии с которым первым измерительным каналом с известным входным сопротивлением производят поочередное измерение напряжений между каждым полюсом контролируемой цепи и шиной заземления, вторым измерительным каналом одновременно измеряют напряжение контролируемой цепи, при этом, после каждого подключения делают определенную выдержку времени для завершения переходных коммутационных процессов, в интервале кратном периоду наиболее вероятной помехи производят по n измерений с вычислением отношения напряжения на полюсе к напряжению контролируемой цепи, а общее сопротивление изоляции вычисляют по формуле:
где: - напряжение контролируемой цепи при i-том измерении и подключении к первому полюсу; - напряжение контролируемой цепи при j-том измерении и подключении к второму полюсу; , - соответствующие напряжения на первом и втором полюсах относительно цепи заземления; - входное сопротивление коммутируемого измерительного канала.
Кроме этого, в предлагаемом решении возможна реализация функции самодиагностики, а также коррекции результатов измерения за счет того, что в интервалах между измерениями сопротивления изоляции производят контроль измерительных каналов путем подключения входов первого измерительного канала к одной точке (шине заземления) и определения среднего значения «нуля» после n измерений для учета в расчете напряжения, а затем подключения этих же входов к обоим полюсам контролируемой цепи для последующего вычисления отношения среднего (из n ) значения показаний второго канала к среднему значению показаний первого канала, при выходе рассчитанных показателей за пределы установленных порогов, делают вывод о нарушении функционирования измерительных каналов, а в противном случае последующее вычисление сопротивления изоляции по процедуре п.1 производят по формуле:
где: - указанное выше отношение.
Для реализации предлагаемого способа измерения сопротивления изоляции цепей постоянного тока устройство содержит микропроцессорный элемент, к входам/выходам последовательного интерфейса которого подключен блок приема/передачи измерительной и диагностической информации, к входу питания аналоговой части - прецизионный элемент стабилизации напряжения, к входам аналого-цифрового преобразования - выходы двух измерительных каналов, а два выхода соединены с входами узла коммутации, средние точки двух независимых групп переключающих контактов исполнительных элементов которых подключены к дифференциальным входам первого измерительного канала, по одному контакту из группы соединено с шиной заземления, а другие подключены к полюсам контролируемой цепи, с которыми соединены и дифференциальные входы второго измерительного канала.
Повышение точности достигается многократными одновременными измерениями и использованием в формулах расчета именно отношений мгновенных значений напряжений с суммированием (интегрированием) их в определенном временном интервале, с возможностью коррекции результатов по сравнению измерений одного и того же напряжения двумя каналами, а интегрирование в интервале кратном периоду наиболее вероятной помехи (периоду частоты питающей сети) дает повышение помехозащищенности результатов измерений. Дополнительно способ и устройство реализуют функцию самодиагностики измерительных каналов и устройства в целом, что особенно важно для автоматизированных систем, в которых возможно его применение.
Краткое описание чертежей
На фиг.1 приведена структурная схема устройства по предлагаемому способу для измерения сопротивления изоляции цепей постоянного тока, находящихся под рабочим напряжением, где: 1 - контролируемая цепь постоянного тока; 2 - узел коммутации; 3 - исполнительные элементы узла коммутации; 4 - две группы переключающих контактов узла коммутации; 5 - шина заземления; 6 - первый измерительный канал; 7 - второй измерительный канал; 8 - микропроцессорный элемент; 9 - прецизионный элемент стабилизации напряжения; 10 - блок приема/передачи измерительной и диагностической информации; R1, R2 - сопротивления изоляции первого и второго полюсов контролируемой цепи.
Устройство, представленное на фиг.1, работает под управлением микропроцессорного элемента по заложенной в него программе в соответствии с алгоритмами, указанными в предлагаемом способе, и производит вычисления по приведенным формулам. Расчетные формулы получены на основании закона Киргофа для точки (шина заземления) ветвления токов утечки через сопротивления изоляции (R1, R2) и поочередно подключаемое к ним входное сопротивление (R0) первого измерительного канала. При подключении к первому полюсу уравнение для токов имеет вид:
или с учетом, что , получаем:
Аналогично, при подключении ко второму полюсу получаем второе уравнение:
Суммируя по i(j) n уравнений 4 и 6, а затем суммируя их правые и левые части, имеем:
, откуда получаем формулу (1).
Решая систему исходных уравнений (3) и (5) относительно и , делая соответствующую подстановку вместо и , получаем формулы для расчета сопротивлений изоляции каждого полюса контролируемой цепи:
Или (для п.2 формулы изобретения):
В алгоритме работы устройства заложена функция передачи как общего сопротивлений изоляции, так и меньшего из значений R1 и R2 с указанием номера полюса, а также предупредительной информации о снижении общего сопротивлений изоляции ниже установленной нормы.
Устройство, реализующее предлагаемый способ, изготовлено на печатной плате размером 30×80 мм, прошло комплекс испытаний, в том числе с повышенным уровнем помех (пульсаций) на контролируемой линии постоянного тока, и подтвердило хорошие метрологические характеристики.
Класс G01R27/18 для измерения сопротивления на землю