высокопрочная хладостойкая arc-сталь
Классы МПК: | C22C38/48 с ниобием или танталом |
Автор(ы): | Малышевский Виктор Андреевич (RU), Хлусова Елена Игоревна (RU), Голосиенко Сергей Анатольевич (RU), Хомякова Надежда Федоровна (RU), Милюц Валерий Георгиевич (RU), Павлова Алла Григорьевна (RU), Пазилова Ульяна Анатольевна (RU), Афанасьев Сергей Юрьевич (RU), Гусев Максим Анатольевич (RU), Левагин Евгений Юрьевич (RU) |
Патентообладатель(и): | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) (RU) |
Приоритеты: |
подача заявки:
2012-09-17 публикация патента:
20.02.2014 |
Изобретение относится к металлургии, а именно к производству толстолистового проката из хладостойкой высокопрочной стали с улучшенной свариваемостью для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и других отраслях промышленности. Сталь содержит компоненты в следующем соотношении, % мас: углерод 0,08-0,11, кремний 0,20-0,40, марганец 0,65-0,85, хром 0,75-0,95, никель 2,10-2,30, медь 0,60-0,80, молибден 0,25-0,30, ниобий 0,02-0,05, алюминий 0,01-0,05, кальций 0,005-0,050, сера 0,001-0,005, фосфор 0,001-0,010, железо - остальное. Величина коэффициента трещиностойкости при сварке Рем не превышает 0,30%. Техническим результатом изобретения является разработка конструкционной хладостойкой стали высокой прочности для судостроения с нормируемой величиной предела текучести 690 МПа, обеспечивающей гарантированные характеристики сопротивляемости хрупким разрушениям и температуру нулевой пластичности. 2 табл., 1 пр.
Формула изобретения
Хладостойкая высокопрочная сталь, содержащая углерод, кремний, марганец, хром, никель, медь, молибден, алюминий, кальций, серу, фосфор и железо, отличающаяся тем, что она дополнительно содержит ниобий при следующем соотношении компонентов, % мас.:
углерод | 0,08-0,11 |
кремний | 0,20-0,40 |
марганец | 0,65-0,85 |
хром | 0,75-0,95 |
никель | 2,10-2,30 |
медь | 0,60-0,80 |
молибден | 0,25-0,30 |
ниобий | 0,02-0,05 |
алюминий | 0,01-0,05 |
кальций | 0,005-0,050 |
сера | 0,001-0,005 |
фосфор | 0,001-0,010 |
железо | остальное, |
причем величина коэффициента трещиностойкости при сварке Рсм не превышает 0,30%.
Описание изобретения к патенту
Изобретение относится к металлургии и может быть использовано при производстве толстолистового проката из хладостойкой arc-стали высокой прочности, улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и других отраслях промышленности.
Для проектирования и строительства таких объектов морской техники, как плавучие и самоподъемные буровые разведочные и добычные платформы, суда категорий arc4-arc9 для эксплуатации в ледовых условиях арктических морей, плавучие краны большой грузоподъемности, ледостойкие терминалы требуются высокопрочные хладостойкие свариваемые arc-стали с гарантированным пределом текучести 690 МПа, способные обеспечить надежную эксплуатацию сварных конструкций в экстремальных условиях воздействия низких окружающих температур (до минус 50°С) и высоких нагрузок в соответствии с требованиями «Правил » Российского морского регистра судоходства [1, 2]. При этом сталь должна отличаться пониженным уровнем легирования для снижения трудоемкости сварочных работ.
Для изготовления ответственных сварных конструкций используется низкоуглеродистая хладостойкая сталь, содержащая компоненты в следующем соотношении, мас.%: углерод 0,08-0,12; кремний 0,2-0,4; марганец 0,45-0,75; хром 1,05-1,30; медь 0,35-0,65; никель 1,05-2,20; молибден 0,10-0,18; алюминий 0,01-0,06; ванадий 0,04-0,06; ниобий 0,02-0,05; кальций 0,005-0,050; сера 0,001-0,005; железо - остальное, причем величина коэффициента трещиностойкости при сварке Рсм, рассчитываемого по формуле
должна быть не более 0,28% [3].
В листовом прокате толщиной до 70 мм сталь обеспечивает гарантированный предел текучести 500 МПа, обеспечивает высокие требования по хладостойкости до минус 80°С, улучшенную свариваемость (по величине коэффициента трещиностойкости), высокую трещиностойкость по критерию CTOD в зоне термического влияния сварного шва.
Для изготовления корпусов кораблей и морских технических сооружений используется низкоуглеродистая хромоникельмолибденовая сталь, принятая за прототип, содержащая компоненты в следующем соотношении, мас.% [4]:
Углерод | 0,07-0,11 |
Кремний | 0,17-0,37 |
Марганец | 0,30-0,60 |
Хром | 0,30-0,70 |
Никель | 1,80-2,30 |
Медь | 0,40-0,70 |
Молибден | 0,25-0,35 |
Ванадий | 0,02-0,05 |
Алюминий | 0,005-0,04 |
Элемент из группы, | |
содержащей кальций, барий | 0,005-0,05 |
Сера | 0,003-0,015 |
Фосфор | 0,003-0,015 |
Железо | остальное |
при условии, что сумма (никель + медь) не менее 2,4 мас.%; сумма (сера + фосфор) не более 0,025 мас.%.
В листовом прокате толщиной до 30 мм сталь обеспечивает высокую прочность при сохранении высокой пластичности, сопротивляемости хрупким и коррозионно-механическим разрушениям, хорошей свариваемости, изотропности свойств и сопротивления слоистому разрыву, однако высокие показатели ударной вязкости гарантируются при температурах не ниже минус 40°С. Основными недостатками указанной стали являются высокая температура нулевой пластичности NDT и недостаточная сопротивляемость хрупкому разрушению, оцениваемая по критерию вязкохрупкого перехода Ткб.
Техническим результатом изобретения является разработка конструкционной хладостойкой arc-стали высокой прочности с гарантированной величиной предела текучести 690 МПа для судостроения, обладающей гарантированными характеристиками работоспособности в соответствии с требованиями «Правил » Российского морского регистра судоходства [2]: значения температур вязкохрупкого перехода для оценки способности материала тормозить распространение хрупкого разрушения должны быть не выше минус 30°С для температуры Ткб, а температура нулевой пластичности NDT должна быть не выше минус 60°С.
Технический результат достигается тем, что сталь, содержащая углерод, кремний, марганец, хром, никель, медь, молибден, алюминий, кальций, серу, фосфор и железо, дополнительно содержит ниобий при следующем соотношении компонентов, мас.%:
Углерод | 0,08-0,11 |
Кремний | 0,20-0,40 |
Марганец | 0,65-0,85 |
Хром | 0,75-0,95 |
Никель | 2,10-2,30 |
Медь | 0,60-0,80 |
Молибден | 0,25-0,30 |
Ниобий | 0,02-0,05 |
Алюминий | 0,01-0,05 |
Кальций | 0,005-0,050 |
Сера | 0,001-0,005 |
Фосфор | 0,001-0,010 |
Железо | остальное |
причем величина коэффициента трещиностойкости при сварке Рсм, рассчитываемого в соответствии с [1] (ч.XII, п.4.2.2) по формуле:
не должна быть выше 0,30%.
Температура растворения карбидов ниобия в аустените на 50-100°С выше температуры растворения карбидов ванадия, в результате чего карбиды ниобия эффективно ограничивают рост аустенитного зерна, способствуя таким образом повышению дисперсности конечной структуры стали, что является наиболее эффективным путем одновременного повышения прочности, низкотемпературной вязкости и пластичности стали.
Введение в сталь марганца и хрома в выбранных пределах способствуют увеличению прочности стали за счет твердорастворного упрочнения, увеличению прокаливаемости, а также одновременному повышению сопротивляемости хрупким разрушениям за счет исключения образования в процессе закалки листового проката толщиной до 50 мм структурно-свободного феррита.
Содержание углерода в указанных пределах в сочетании с мелкозернистой структурой способствует обеспечению высокой прочности стали. Превышение указанных пределов нецелесообразно вследствие существенного снижения пластичности, вязкости, хладостойкости, а также повышения закаливаемости и увеличения склонности стали к образованию горячих и холодных трещин при сварке.
Выбранные пределы содержания марганца, меди и никеля обеспечивают необходимую прочность стали и ее вязкость при отрицательных температурах посредством твердорастворного упрочнения, а также прокаливаемость за счет повышения стабильности аустенита в ферритной области при - -превращении и образования преимущественно бейнитно-мартенситных структур при закалке проката в толщинах до 50 мм.
Молибден предотвращает формирование феррита и развитие отпускной хрупкости стали. При содержании свыше 0,3% молибден понижает вязкость стали.
Фосфор обуславливает повышенную склонность к хрупким разрушениям при понижении температуры испытаний и отпускной хрупкости за счет обогащения межзеренных границ. Ограничение содержания фосфора в указанных пределах в сочетании с введением молибдена в выбранных пределах позволяет исключить отпускную хрупкость.
Пример
Сталь была выплавлена в дуговой электропечи и после внепечного рафинирования и вакуумирования разлита в слитки. Химический состав приведен в таблице 1.
Слитки нагревали до температуры 1200±20°С в камерной печи и прокатывали на стане «5000» на листы толщиной 10-50 мм, которые подвергали прямой закалке в воду после завершения горячей пластической деформации и последующему отпуску в интервале температур 620÷680°С.
Механические свойства определяли на образцах, вырезанных поперек направления прокатки. Испытание на растяжение выполняли по ГОСТ 1497 на цилиндрических образцах типа III № 6 (для листов толщиной 10 мм), цилиндрических образцах типа III № 4 (для листов толщиной 35 и 50 мм). Испытания на ударный изгиб выполняли по ГОСТ 9454 на образцах с V-образным надрезом тип II при температурах минус 60°C и минус 80°С.
Сопротивление хрупкому разрушению листового проката оценивали:
- по критической температуре вязко-хрупкого перехода Ткб по методике, приведенной в [1] (часть XII, п.2.4.2), соответствующей минимальной температуре, при которой в изломе технологической пробы полной толщины, испытанной на статический изгиб, наблюдается 70% волокнистой составляющей;
- по температуре нулевой пластичности NDT, определяемой по результатам динамических испытаний образцов с хрупкой наплавкой по методике, приведенной в [1] (часть XII, п.2.3.2). Эта температура характеризует условия, при которых материал не способен затормозить трещину при ударном нагружении со скоростью порядка 5 м/с, и достижения в нем напряжений предела текучести.
Свариваемость оценивали по результатам расчета параметра трещиностойкости при сварке Рсм по вышеприведенной формуле.
Результаты механических испытаний (средние значения по результатам двух испытаний на растяжение и трех на ударный изгиб) и характеристик работоспособности приведены в таблице 2.
Результаты испытаний показывают, что предлагаемая сталь обеспечивает требуемый уровень прочности, более высокую сопротивляемость хрупким разрушениям и низкотемпературную пластичность, удовлетворяющие требованиям «Правил » Российского морского регистра судоходства [2], чем известная.
Источники информации, использованные при составлении описания изобретения:
1. Правила классификации, постройки и оборудования плавучих буровых установок и морских стационарных платформ. Российский Морской Регистр судоходства, 2012 г.
2. Правила классификации и постройки морских судов. Российский Морской Регистр судоходства, 2012 г.
3. Патент Российской Федерации № 2269588, МПК С22С 38/48, 2006 г.
4. Патент Российской Федерации № 1676276, МПК С22С 38/46, 1996 г. - прототип.
5. BS 7448. Fracture Mechanics Toughness Test. Part 1. Method for determination of Klc, critical CTOD and critical J - values of metallic materials, 1991. Part 2. Method for determination of critical CTOD and critical J values of welds in metallic materials, 1997.
Таблица 1 | |||||||||||||||
Химический состав стали, мас.% | |||||||||||||||
№ состава | С | Si | Mn | Cr | Ni | Cu | Мо | Nb | V | Al | Ca | S | Р | Fe | Рсм, мас.% |
1 | 0,09 | 0,4 | 0,85 | 0,75 | 2,10 | 0,80 | 0,25 | 0,03 | - | 0,01 | 0,030 | 0,001 | 0,005 | остальное | 0,275 |
2 | 0,11 | 0,2 | 0,65 | 0,80 | 2,30 | 0,60 | 0,27 | 0,02 | - | 0,02 | 0,050 | 0,005 | 0,001 | остальное | 0,275 |
3 | 0,08 | 0,3 | 0,75 | 0,95 | 2,20 | 0,70 | 0,30 | 0,05 | - | 0,05 | 0,005 | 0,002 | 0,010 | остальное | 0,267 |
Прототип | |||||||||||||||
4 | 0,11 | 0,37 | 0,60 | 0,70 | 2,30 | 0,70 | 0,35 | - | 0,04 | 0,04 | 0,05 (Ba) | 0,015 | 0,010 | остальное | 0,288 |
Класс C22C38/48 с ниобием или танталом