способ дообработки питьевой воды

Классы МПК:C02F1/28 сорбцией
C02F1/50 добавлением или применением бактерицидных средств или олигодинамической обработкой
C01B31/08 активированный уголь 
Автор(ы):, , , , ,
Патентообладатель(и):Государственное Унитарное Предприятие "Водоканал Санкт-Петербурга" (RU),
Закрытое акционерное общество "Центр исследований и интеллектуальной собственности "АКВАПАТЕНТ" (RU)
Приоритеты:
подача заявки:
2012-04-05
публикация патента:

Изобретение относится к обработке питьевой воды с использованием сорбционной очистки. Способ дообработки питьевой воды включает механическую фильтрацию воды через древесную активированную угольную сорбционную загрузку и введение в исходную фильтруемую воду гипохлорита натрия. Фильтрацию исходной воды осуществляют с заданной скоростью, соответствующей времени контакта фильтруемой воды с сорбционной загрузкой в течение 8-12 минут. Периодически измеряют показатель окисляемости в фильтрате. При увеличении на 25-30% показателя окисляемости в фильтрате заданную скорость фильтрации снижают в 2-3 раза. Гипохлорит натрия вводят в исходную фильтруемую воду с концентрацией 60-80 мг/л, после чего сорбционную загрузку промывают обратным током очищенной воды. Изобретение позволяет увеличить сорбционную емкость угля в процессе дообработки воды. 1 з.п. ф-лы, 1 ил., 1 табл. способ дообработки питьевой воды, патент № 2510887

способ дообработки питьевой воды, патент № 2510887

Формула изобретения

1. Способ дообработки питьевой воды, включающий механическую фильтрацию воды через древесную активированную угольную сорбционную загрузку, и введением в исходную фильтруемую воду гипохлорита натрия, отличающийся тем, что фильтрацию исходной воды осуществляют с заданной скоростью, соответствующей времени контакта фильтруемой воды с сорбционной загрузкой в течение 8-12 минут, при этом периодически измеряют показатель окисляемости в фильтрате, и при увеличении на 25-30% показателя окисляемости в фильтрате заданную скорость фильтрации снижают в 2-3 раза, гипохлорит натрия вводят в исходную фильтруемую воду с концентрацией 60-80 мг/л, после чего сорбционную загрузку промывают обратным током очищенной воды.

2. Способ дообработки питьевой воды по п.1,

отличающийся тем, что цикличность периодической промывки сорбционной загрузки обратным током очищенной воды производится до момента потери сорбционной загрузкой регламентируемой нормативами степени очистки воды.

Описание изобретения к патенту

Изобретение относится к области обработки природных вод, а именно к способам дообработки (доочистки) питьевой воды с использованием сорбционной обработки воды на активированных углях.

Питьевая вода, предназначенная для использования населением, поступает в дома с водопроводных очистных сооружений (ВОС) по водопроводным сетям. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения регламентируются СанПиН 2.1.4.1074-01 [1]. BOC обеспечивают на выходе требуемое качество питьевой воды, но к потребителю в дома может поступать вода, не отвечающая требованиям указанного СанПиН, в основном из-за технического состояния трубопроводов, по которым она транспортируется. При этом транспортируемая вода может вторично загрязняться соединениями железа (допустимая концентрация 0,3 мг/л), взвешенными веществами (1,5 мг/л), бактериальными загрязнениями, также в ней может наблюдаться повышенная цветность (допустимо 20 градусов ПКШ - платиново-кобальтовой шкалы) и окисляемость (5 мг O/л).

Поэтому такая водопроводная вода, предназначенная для питья и приготовления пищи, должна подвергаться доочистке (дообработке) тем или иным способом непосредственно у потребителя (группы потребителей, например, в масштабе жилого дома).

В процессах кондиционирования (доочистки) воды для питьевых целей наиболее широко и давно применяется сорбционная обработка воды на активированных углях (Николадзе Г.И., Минц Д.М., Кастальский А.А. Подготовка воды для питьевого и промышленного водоснабжения. - М.: Высш. школа, 1984. - С.220-229).

Серьезным недостатком использования активированных углей на практике является низкая эффективность их регенерации, а также сложность ее проведения. Регенерация углей может производиться химическим, термическим и биологическим методами.

Для регенерации активных углей с целью восстановления их сорбционной емкости химическим методом применяют окислитель, вводя его в исходную воду перед подачей на колонки с адсорбентами.

В последние годы в качестве окислителя для обработки водопроводной воды широко применяют растворы гипохлорита натрия, обладающего, в том числе, пролонгированным бактерицидным действием.

Задачей настоящего изобретения является восстановление сорбционной емкости угольной загрузки фильтра в процессе дообработки воды.

Технический результат заключается в увеличении сорбционной емкости угля в процессе дообработки воды.

Задача решена следующим образом.

Способ дообработки питьевой воды включает механическую фильтрацию исходной воды через древесную активированную угольную сорбционную загрузку с заданной скоростью, соответствующей времени контакта фильтруемой воды с сорбционной загрузкой, обычно в течение от 8 до 12 минут, при этом периодически измеряют показатель окисляемости в фильтрате, и при увеличении на 25-30% показателя окисляемости в фильтрате заданную скорость фильтрации снижают в 2-3 раза, а в исходную фильтруемую воду вводят гипохлорит натрия концентрацией 60-80 мг/л, после чего сорбционную загрузку промывают обратным током очищенной воды.

При этом цикличность периодической промывки сорбционной загрузки обратным током очищенной воды производится до момента потери сорбционной загрузкой регламентируемой нормативами степени очистки воды.

Например известно, что степень очистки воды в Российской Федерации регламентируется СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения».

Улучшение сорбционной способности угля по снижению окисляемости в процессе дообработки воды в заявляемом изобретении осуществляется путем использования повышенных концентраций гипохлорита натрия периодически и кратковременно при пониженной скорости фильтрации. Обработка гипохлоритом натрия концентрацией 60-80 мг/л производится только при увеличении на 25-30% показателя окисляемости в фильтрате, установленного по результатам периодических измерений относительно предыдущих показателей окисляемости в фильтрате, например относительно наилучшего показателя окисляемости в фильтрате, определенного на начальном этапе фильтрования.

Повышенные концентрации гипохлорита натрия способствуют удалению экранирующего действия органических загрязнений на поверхности зерен угольного фильтра. Применение гипохлорита натрия с малой концентрацией в известной «классической» окислительно-сорбционной схеме обработки воды является намного менее эффективным, чем применение этого же реагента для регенерации углей периодически в больших дозах и кратковременно.

При подаче в фильтр с сорбционной загрузкой гипохлорита натрия концентрацией 60-80 мг/л, происходит частичный выброс в фильтрат органических загрязнений, ранее задержанных в порах углей, что обусловлено окислением гуматов и других органических соединений, задержанных в порах углей на стадии сорбции и их выбросом в фильтрат, что, по сути, является регенерацией отработанных на стадии сорбции углей. При обратной промывке фильтра обратным током очищенной питьевой воды общая эффективность очистки восстанавливается. Обратная промывка осуществляется обязательно после каждого этапа обработки фильтрующей загрузки гипохлоритом натрия.

Регенерация активированных углей гипохлоритом натрия в процессе фильтрования позволяет восстановить сорбционные способности по снижению окисляемости, являющейся определяющим показателем для определения сорбционной емкости активированных углей.

Регенерация с применением водного раствора гипохлорита натрия с предельной дозой активного хлора 70 мг/л по настоящему изобретению увеличивает сорбционную емкость активированной угольной сорбционной загрузки по общему эффекту очистки на 25%.

Таким образом, периодически, при увеличении на 25-30% показателя окисляемости в фильтрате скорость фильтрации снижают в 2-3 раза по сравнению с исходной, с применением дозы гипохлорита натрия концентрацией 60-80 мг/л, обеспечивая при этом стабильные показатели очищенной воды.

Таким образом, настоящим изобретением поставленная задача решена и достигается заявленный технический результат.

Для регенерации активированных углей дозы активного хлора в воде с гипохлоритом натрия были определены экспериментально.

Определяли оптимальную дозу гипохлорита натрия следующим образом: воду с заданными различными дозами активного хлора (начиная с 1 мг/л и далее в сторону увеличения) обрабатывали на адсорбционных колонках с активированным углем исходным (АУИСХ) до получения максимальных результатов по показателям качества воды.

Схема проведения процесса представлена следующими стадиями:

1. через колонки с АУИСХ было пропущено 160 л исходной водопроводной воды с заданной (штатной) линейной скоростью фильтрации 2,5 м/ч до снижения сорбционной емкости угля, при этом снижение эффекта очистки по окисляемости до 30% свидетельствовало о необходимости проведения регенерации, но при этом качество очищенной воды соответствовало требованиям СанПиН;

2. в 10 л исходной водопроводной воды вводился гипохлорит натрия из расчета получения активной дозы хлора в растворе 1 мг/л, после контакта с окислителем в течение 10 минут вода подавалась на колонки с АУИСХ, причем линейная скорость «регенерационной» фильтрации была снижена до 1 м/ч, т.е. в 2,5 раза по сравнению с заданной («штатной») линейной скоростью. При этом время контакта фильтруемой исходной хлорированной водопроводной воды с сорбционной загрузкой составляло порядка 20 мин, т.е. в 2,5 раза больше, чем при фильтровании со «штатной» линейной скоростью фильтрации;

3. аналогично пункту 2, концентрация активного хлора в обрабатываемой воде - 2 мг/л;

4. аналогично пункту 2, концентрация активного хлора в обрабатываемой воде - 5 мг/л;

5. аналогично пункту 2, концентрация активного хлора в обрабатываемой воде - 70 мг/л;

6. обратная промывка осуществлялась водопроводной водой объемом 5 л;

7. через адсорбционную колонку с АУИСХ было пропущено 25 л исходной водопроводной воды со скоростью 2,5 м/ч;

8. обратная промывка осуществлялась водопроводной водой объемом 5 л;

9. аналогично пункту 2, концентрация активного хлора в обрабатываемой воде - 30 мг/л;

10. обратная промывка осуществлялась водопроводной водой объемом 5 л;

11. через адсорбционную колонку с АУИСХ было пропущено 30 л исходной водопроводной воды со скоростью 2,5 м/ч;

12. аналогично пункту 2, концентрация активного хлора в обрабатываемой воде - 10 мг/л;

13. обратная промывка осуществлялась водопроводной водой объемом 5 л;

14. через колонки с АУ ИСХ было пропущено 25 л исходной водопроводной воды со скоростью 2,5 м/ч.

После каждой стадии исследований определялись нормируемые показатели качества воды, обработанной на АУИСХ. Специально после стадии 5 (концентрация активного хлора в обрабатываемой воде 70 мг/л) в фильтрате определялось содержание активного хлора, которое, как оказалось, было предельно допустимым и составляло 0,45 мг/л.

В качестве контролируемых показателей исходной и очищенной воды были приняты наиболее характерные и оперативно определяемые показатели: pH, железо общее (Fe, мг/л), окисляемость перманганатная (Ок, мг/л) и цветность водопроводной воды (Ц, град).

Результаты исследований по эффективности дообработки питьевой воды приведены в табл.1.

В таблице представлены показатели качества для исходной водопроводной воды, обработанной активированным углем (АУИСХ).

Таблица 1
Сводные показатели качества водопроводной воды, обработанной АУИСХ
ПробаОбъем обработанной воды (нараст. итогом), лПоказатель качества воды
pH Цветность, град. ПКШЖелезо общее, мг/л Окисляемость, мг/л
Исх. водопр. вода100 7,315,0 0,484,2
Вода, обраб. АУИСХ7,8 0,00,03 0,7
Исх. водопр. вода 2006,818,8 0,214,6
Вода, обраб. АУИСХ 7,43,90,08 1,9
Исх. водопр. вода310 6,436,00,22 3,9
Вода, обраб. АУИСХ7,2 5,70,142,4
Исх. водопр. вода 4506,818,2 0,234,7
Вода, обраб. АУИСХ 6,98,10,11 2,7
Исх. водопр. вода575 6,816,20,20 5,6
Вода, обраб. АУИСХ6,8 9,30,113,5
Исх. водопр. вода 6856,621,3 0,385,2
Вода, обраб. АУИСХ 6,713,70,12 3,7
Исх. водопр. вода825 5,932,40,62 5,4
Вода, обраб. АУИСХ6,6 11,20,154,2
Исх. водопр. вода 10756,616,7 0,314,1
Вода, обраб. АУИСХ 6,612,10,14 4,0

Результаты исследований по цветности приведены на Фиг.1.

Результаты исследований по остальным нормируемым показателям (окисляемость, железо общее) аналогичны результатам по цветности.

На Фиг.1 показаны:

1 - доза активного хлора 1 мг/л;

2 - доза активного хлора 2 мг/л;

3 - доза активного хлора 5 мг/л;

4 - доза активного хлора 70 мг/л;

5 - доза активного хлора 30 мг/л;

6 - доза активного хлора 10 мг/л.

В результате было установлено, что применение гипохлорита натрия с малой концентрацией в «классической» окислительно-сорбционной схеме обработки воды является намного менее эффективным, чем применение этого же реагента для регенерации углей периодически в больших дозах и кратковременно.

Таким образом, установлено, что:

- регенерация активированных углей гипохлоритом натрия в процессе фильтрования позволяет восстановить сорбционные способности по снижению окисляемости, являющейся определяющим показателем для определения сорбционной емкости активированных углей;

- анализ и сравнение данных позволяет установить, что водная регенерация с применением гипохлорита натрия по разработанной схеме увеличивает сорбционную емкость АУИСХ по общему эффекту очистки на 25%.

Класс C02F1/28 сорбцией

биосорбент для ликвидации нефти с поверхности водоемов -  патент 2529771 (27.09.2014)
способ очистки водных растворов от эндотоксинов -  патент 2529221 (27.09.2014)
способ очистки природных или сточных вод от фтора и/или фосфатов -  патент 2528999 (20.09.2014)
устройства для очистки и улучшения воды -  патент 2528989 (20.09.2014)
биоразлагаемый композиционный сорбент нефти и нефтепродуктов -  патент 2528863 (20.09.2014)
способ получения сорбентов на основе гидроксида трехвалентного железа на носителе из целлюлозных волокон -  патент 2527240 (27.08.2014)
способ очистки воды от силикатов -  патент 2526986 (27.08.2014)
способ очистки сточных вод от взвешенных веществ и нефтепродуктов -  патент 2525245 (10.08.2014)
способ очистки природных вод -  патент 2524965 (10.08.2014)
способ комплексной очистки воды -  патент 2524939 (10.08.2014)

Класс C02F1/50 добавлением или применением бактерицидных средств или олигодинамической обработкой

способ консервации водных препаратов минеральных веществ, консервированные водные препараты минеральных веществ и применение консервирующих соединений в водных препаратах минеральных веществ -  патент 2529816 (27.09.2014)
способ противодействия биологическому загрязнению текучих сред, используемых для обработки подземных скважин -  патент 2527779 (10.09.2014)
способ обеззараживания воды -  патент 2524944 (10.08.2014)
стабилизированная биоцидная композиция -  патент 2522137 (10.07.2014)
способ обеззараживания воды и оценки его эффективности -  патент 2520857 (27.06.2014)
способ инактивации вирусов в водных средах -  патент 2506232 (10.02.2014)
способ утилизации продувочной воды циркуляционной системы -  патент 2502683 (27.12.2013)
состав для дезинфекции воды -  патент 2501741 (20.12.2013)
дезинфицирующее средство для обеззараживания воды -  патент 2499771 (27.11.2013)
синергетическая противомикробная композиция -  патент 2499387 (27.11.2013)

Класс C01B31/08 активированный уголь 

способ получения модифицированного активного угля -  патент 2529233 (27.09.2014)
способ функционализации углеродных наноматериалов -  патент 2529217 (27.09.2014)
способ получения активного угля из растительных отходов -  патент 2527221 (27.08.2014)
пористые угреродные композиционные материалы и способ их получения, а также адсорбенты, косметические средства, средства очистки и композиционные фотокаталитические материалы, содержащие их -  патент 2521384 (27.06.2014)
способ получения активного угля на основе антрацита -  патент 2518964 (10.06.2014)
способ получения углеродного адсорбента -  патент 2518579 (10.06.2014)
магнитоуправляемый сорбент для удаления эндо- и экзотоксинов из организма человека -  патент 2516961 (20.05.2014)
способ получения хемосорбента -  патент 2510868 (10.04.2014)
способ получения активных углей из шихт коксохимического производства -  патент 2507153 (20.02.2014)
способ очистки водных растворов от пиридина -  патент 2502679 (27.12.2013)
Наверх