способ осаждения наноразмерной пленки альфа-al2o3 (0001) на металлические подложки

Классы МПК:C23C14/16 на металлическую подложку или на подложку из бора или кремния
B82Y30/00 Нано-технология материалов или поверхностных эффектов, например нано-композиты
Автор(ы):, , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Северо-Осетинский государственный университет имени Коста Левановича Хетагурова" (СОГУ) (RU)
Приоритеты:
подача заявки:
2012-09-10
публикация патента:

Изобретение относится к нанотехнологиям, в частности к методам осаждения наноразмерной пленки способ осаждения наноразмерной пленки альфа-al2o3 (0001) на металлические   подложки, патент № 2516366 -Al2O3 (0001) на металлические подложки способ осаждения наноразмерной пленки альфа-al2o3 (0001) на металлические   подложки, патент № 2516366 -Al2O3 (0001) в условиях сверхвысокого вакуума. Проводят нагрев, испарение и осаждение оксида алюминия на металлическую подложку с определенной ориентацией кристаллов. Осуществляют осаждение испаряемого потока, состоящего из частиц AlO и (AlO)2. Испаряемый поток состоит из частиц AlO и (AlO)2, а после осаждения каждого последующего монослоя проводят экспозицию в молекулярном кислороде при парциальном давлении 10-7 мм рт.ст. в течение 3 минут при температуре подложки 700°C. Получается ориентированная высокостабильная наноразмерная пленка способ осаждения наноразмерной пленки альфа-al2o3 (0001) на металлические   подложки, патент № 2516366 -Al2O3 (0001) на чистой поверхности металла-подложки с сохранением межфазовой границы оксид-металл на атомном уровне. 3 пр.

Формула изобретения

Способ осаждения наноразмерной пленки способ осаждения наноразмерной пленки альфа-al2o3 (0001) на металлические   подложки, патент № 2516366 -Al2O3 (0001) на металлическую подложку в условиях сверхвысокого вакуума, включающий нагрев, испарение и осаждение оксида алюминия на металлическую подложку с определенной ориентацией кристаллов, отличающийся тем, что осуществляют осаждение испаряемого потока, состоящего из частиц AlO и (AlO)2 , при этом после осаждения каждого последующего монослоя проводят экспозицию в молекулярном кислороде при парциальном давлении 10-7 мм рт.ст. в течение 3 минут при температуре подложки 700°C.

Описание изобретения к патенту

Изобретение относится к методам осаждения тонких пленок на металлическую подложку, а именно к нанотехнологиям и наноструктурам.

Известен способ изготовления полярной упорядоченной тонкой пленки MgO («Method for preparing polar MgO order thin film», CN № 1958455 (A), 2006.11.27), в котором на металлическую подложку в вакууме осаждают моноатомный слой магния, затем напускают в камеру O2 и нагревают сформированную подложку до температуры 400°C. После того как температура подложки стабилизируется, система естественным путем охлаждается до комнатной температуры, после чего процесс повторяется. Данная процедура приводит к формированию структурно-упорядоченной пленки оксида магния со структурой поверхности, соответствующей полярной грани кристалла MgO (111).

Недостатками этого способа являются: взаимная диффузия атомов магния и подложки, приводящая к нарушению структурного атомного порядка слоя магния и соответственно всего слоя оксида магния; а так же ожидаемая диффузия молекул кислорода сквозь слой магния и взаимодействие его с веществом подложки, приводящее к нарушению симметрии выращиваемой пленки. Оба указанных обстоятельства приводят к нарушению резкости межфазовой границы оксид-подложка, что существенно снижает характеристики получаемой системы.

Наиболее близким к заявляемому изобретению является способ осаждения наноразмерной пленки способ осаждения наноразмерной пленки альфа-al2o3 (0001) на металлические   подложки, патент № 2516366 -Al2O3 (0001) на металлическую подложку в условиях сверхвысокого вакуума, включающий нагрев, испарение и осаждение оксида алюминия на металлическую подложку (EP 1616978 A1, МПК C23C 30/00, 18.01.2006, формула, пример).

Задачей изобретения является получение ориентированной, высокостабильной, наноразмерной пленки способ осаждения наноразмерной пленки альфа-al2o3 (0001) на металлические   подложки, патент № 2516366 -Al2O3 (0001) на чистой поверхности металла-подложки с сохранением резкости межфазовой границы оксид-металл на атомном уровне.

Поставленная задача достигается тем, что в условиях сверхвысокого вакуума порошок Al2 O3 нагревают вольфрамовой спиралью до tспособ осаждения наноразмерной пленки альфа-al2o3 (0001) на металлические   подложки, патент № 2516366 2700-2800°C. При данной температуре происходит испарение Al2O3 с последующим осаждением молекул оксида на металлическую подложку, поддерживаемую при температуре 700°C.

В качестве подложки используют поверхность кристалла металла с определенной ориентацией, способствующей получению пленки способ осаждения наноразмерной пленки альфа-al2o3 (0001) на металлические   подложки, патент № 2516366 -Al2O3 (0001), так как на атомную структуру растущей пленки оксида алюминия значительное влияние оказывает симметрия подложки.

В процессе формирования пленки, после каждого очередного нанесенного монослоя, проводят экспозицию в молекулярном кислороде при парциальном давлении 10-7 мм рт.ст. в течение 3 минут при температуре подложки 700°C.

Получаемая таким образом пленка оксида алюминия, начиная с толщины в 5 ангстрем, обладает стехиометрией Al2O3, атомной структурой соответствующей поверхности способ осаждения наноразмерной пленки альфа-al2o3 (0001) на металлические   подложки, патент № 2516366 -Al2O3 (0001) и электронными свойствами, характерными для массивного оксида алюминия.

В процессе формирования пленки оксида алюминия указанным способом не происходит диффузии напыляемых частиц AlO и (AlO)2 в подложку, что обеспечивает формирование резких межфазовых границ металл-оксид на атомном уровне. Вместе с тем при непосредственном контакте частиц AlO с поверхностью подложки происходит изменение свойств межатомной Al-O связи по сравнению со связью Al-O в массивном оксиде алюминия. Как следствие, первый мономолекулярный слой обладает новыми уникальными электронными свойствами, не характерными для массивного кристалла.

Как видно из изложенного техническая задача реализуется полностью и в сравнении с известным техническим решением - прототипом, имеет большие преимущества:

1) Высокая стабильность получаемых пленок способ осаждения наноразмерной пленки альфа-al2o3 (0001) на металлические   подложки, патент № 2516366 -Al2O3 (0001) - термическая обработка даже при высоких температурах (1000-1500°C) не приводит к изменению свойств пленки оксида алюминия.

2) В отличие от MgO (111), где пленка стабильна только при малой толщине - 5 монослоев (при больших толщинах структура (111) разрушается), толщина формируемой пленки способ осаждения наноразмерной пленки альфа-al2o3 (0001) на металлические   подложки, патент № 2516366 -Al2O3 может быть достаточно большой - порядка 100 монослоев с сохранением стабильности, структуры и электронных свойств.

3) Имеется возможность «настройки» электронных свойств поверхности пленки оксида алюминия при сверхнизких толщинах 1-2 монослоя, когда электронные свойства поверхности обусловлены ослаблением межатомной Al-O связи.

Пример 1

Порошок оксида алюминия чистотой не ниже 99,96%, нанесенный на вольфрамовую нить диаметром 0,35 мм, в условиях сверхвысокого вакуума нагревается до температуры 2700-2800°C, при которой плотность потока испаряемых частиц оксида алюминия составляет 3×1014 частиц/мин × см2. При осаждении таких частиц на атомарно чистую поверхность кристалла Mo (110), поддерживаемую при температуре 700°C и при последующей выдержке каждого нанесенного монослоя оксида алюминия в атмосфере кислорода при парциальном давлении 10-7 мм рт.ст. в течение 3 минут, образуется сплошная упорядоченная стехиометрическая пленка оксида способ осаждения наноразмерной пленки альфа-al2o3 (0001) на металлические   подложки, патент № 2516366 -Al2O3 (0001), начиная с монослойного покрытия.

Пример 2

Порошок оксида алюминия чистотой не ниже 99,96%, нанесенный на вольфрамовую нить диаметром 0,35 мм, в условиях сверхвысокого вакуума нагревается до температуры 2700-2800°C, при которой плотность потока испаряемых частиц оксида алюминия составляет 4×1014 частиц/мин × см2. При осаждении таких частиц на атомарно чистую поверхность кристалла W (110), поддерживаемую при температуре 800°C и при последующей выдержке каждого нанесенного монослоя оксида алюминия в атмосфере кислорода при парциальном давлении 10-7 мм рт.ст. в течение 4 минут, образуется сплошная упорядоченная стехиометрическая пленка оксида способ осаждения наноразмерной пленки альфа-al2o3 (0001) на металлические   подложки, патент № 2516366 -Al2O3 (0001), начиная с монослойного покрытия.

Пример 3

Порошок оксида алюминия чистотой не ниже 99,96%, нанесенный на вольфрамовую нить диаметром 0,35 мм, в условиях сверхвысокого вакуума нагревается до температуры 2700-2800°C, при которой плотность потока испаряемых частиц оксида алюминия составляет 5×1014 частиц/мин × см2. При осаждении таких частиц на атомарно чистую поверхность кристалла Re (0001), поддерживаемую при температуре 850°C и при последующей выдержки каждого нанесенного монослоя оксида алюминия в атмосфере кислорода при парциальном давлении 2×10-7 мм рт.ст. в течение 4 минут, образуется сплошная упорядоченная стехиометрическая пленка оксида способ осаждения наноразмерной пленки альфа-al2o3 (0001) на металлические   подложки, патент № 2516366 -Al2O3 (0001), начиная с монослойного покрытия.

Класс C23C14/16 на металлическую подложку или на подложку из бора или кремния

способ защиты поверхности алюминия от коррозии -  патент 2522874 (20.07.2014)
негаммафазный кубический alcro -  патент 2507303 (20.02.2014)
способ получения металлсодержащего углеродного наноматериала -  патент 2499850 (27.11.2013)
способ антикоррозионной обработки детали путем осаждения слоя циркония и/или циркониевого сплава -  патент 2489512 (10.08.2013)
слой барьера, препятствующего прониканию водорода -  патент 2488645 (27.07.2013)
способ "гибридного" получения износостойкого покрытия на режущем инструменте -  патент 2485210 (20.06.2013)
способ алюминирования из паровой фазы металлической детали газотурбинного двигателя, донорская рубашка и лопатка газотурбинного двигателя, содержащая такую рубашку -  патент 2485206 (20.06.2013)
способ формирования теплозащитного покрытия на деталях газовых турбин из никелевых и кобальтовых сплавов -  патент 2479666 (20.04.2013)
способ нанесения комбинированных pvd/cvd/pvd покрытий на режущий твердосплавный инструмент -  патент 2468124 (27.11.2012)
способ формирования вольфрам-углерод-медных покрытий на медных контактных поверхностях -  патент 2464354 (20.10.2012)

Класс B82Y30/00 Нано-технология материалов или поверхностных эффектов, например нано-композиты

способ получения железного порошка -  патент 2529129 (27.09.2014)
способ получения композиционных материалов на основе диоксида кремния -  патент 2528667 (20.09.2014)
режущая пластина -  патент 2528288 (10.09.2014)
способ получения термоэлектрического материала -  патент 2528280 (10.09.2014)
ветошь для чистки ствола огнестрельного оружия -  патент 2527577 (10.09.2014)
способ упрочнения металлических изделий с получением наноструктурированных поверхностных слоев -  патент 2527511 (10.09.2014)
способ получения наноматериала на основе рекомбинантных жгутиков археи halobacterium salinarum -  патент 2526514 (20.08.2014)
керамический композиционный материал на основе алюмокислородной керамики, структурированной наноструктурами tin -  патент 2526453 (20.08.2014)
нанокомпозит на основе никель-хром-молибден -  патент 2525878 (20.08.2014)
износостойкий композиционный керамический наноструктурированный материал и способ его получения -  патент 2525538 (20.08.2014)
Наверх