устройство для очистки радиоактивной парогазовой смеси при аварийном выбросе водо-водяного ядерного реактора

Классы МПК:G21F9/02 обработка газообразных отходов
Автор(ы):,
Патентообладатель(и):Открытое акционерное общество "Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара" (RU)
Приоритеты:
подача заявки:
2013-02-12
публикация патента:

Изобретение относится к атомной технике, а именно к устройству для очистки радиоактивной парогазовой смеси при аварийном выбросе водо-водяного ядерного реактора и может быть использовано при проектировании водо-водяных реакторов нового поколения, а также для модернизации существующих АЭС. Техническим результатом является обеспечение радиационной безопасности и взрывобезопасности в условиях аварийного срабатывания предохранительных клапанов водо-водяного реактора за счет отведения парогазовой смеси за пределы первичной защитной оболочки реактора. Устройство для очистки радиоактивной парогазовой смеси при аварийном выбросе водо-водяного ядерного реактора включает защитную оболочку с размещенными в ней предохранительными клапанами, соединенными трубопроводом с последовательно установленными жалюзийным сепаратором и пароструйным эжектором, расположенными вне защитной оболочки. Сепаратор в верхней части соединен с гидроемкостью, а в нижней части соединен с емкостью для сбора отсепарированной жидкости. Эжектор размещен в бассейне, по периметру которого установлены перфорированные трубы. Гидроемкость и перфорированные трубы соединены с ресиверами. Бассейн снабжен воздушным теплообменником и установленным над ним вытяжным зонтом. Вытяжной зонт соединен с трубой выдержки газов, в которой размещены аэрозольные фильтры. Труба выдержки газов соединена сдувочными линиями с сепаратором и трубопроводом. Гидроемкость и бассейн заполнены щелочным раствором. 3 з.п. ф-лы, 2 ил. устройство для очистки радиоактивной парогазовой смеси при аварийном   выбросе водо-водяного ядерного реактора, патент № 2523436

устройство для очистки радиоактивной парогазовой смеси при аварийном   выбросе водо-водяного ядерного реактора, патент № 2523436 устройство для очистки радиоактивной парогазовой смеси при аварийном   выбросе водо-водяного ядерного реактора, патент № 2523436

Формула изобретения

1. Устройство для очистки радиоактивной парогазовой смеси при аварийном выбросе водо-водяного ядерного реактора, включающее защитную оболочку с размещенными в ней предохранительными клапанами, соединенными трубопроводом с последовательно установленными жалюзийным сепаратором и пароструйным эжектором, расположенными вне защитной оболочки, сепаратор в верхней части соединен с гидроемкостью, снабженной ресиверами, а в нижней части соединен с емкостью для сбора отсепарированной жидкости, эжектор размещен в бассейне, по периметру которого установлены перфорированные трубы, соединенные с ресиверами, бассейн снабжен воздушным теплообменником и установленным над ним вытяжным зонтом, соединенным с трубой выдержки газов, в которой размещены аэрозольные фильтры, при этом труба выдержки газов соединена сдувочными линиями с сепаратором и трубопроводом, а гидроемкость и бассейн заполнены щелочным раствором.

2. Устройство по п.1, отличающееся тем, что гидроемкость заполнена 1% щелочным раствором.

3. Устройство по п.1, отличающееся тем, что бассейн заполнен щелочным раствором рН>8.

4. Устройство по п.1, отличающееся тем, что аэрозольные фильтры выполнены из углесодержащей ткани.

Описание изобретения к патенту

Изобретение относится к атомной технике, к средствам обеспечения взрывобезопасности и радиационной безопасности и может быть использовано при проектировании водо-водяных реакторов нового поколения, а также для модернизации существующих АЭС.

Для обеспечения радиационной безопасности на водо-водяных реакторах АЭС различных типов (PWR, ВВЭР, BWR, CANDU) при аварийном повышении давления в корпусе реактора и срабатывании предохранительных клапанов предусмотрены защитные герметичные оболочки, позволяющие локализовать объем радиоактивного пара и газов и предотвратить их попадание в окружающую среду. В существующих АЭС с водо-водяными реакторами наибольшее распространение получила конструктивная схема с двумя герметичными оболочками из предварительно напряженного железобетона с проектным давлением до 0,4-0,6 МПа. (Проектирование систем защитной оболочки реактора для атомных электростанций. Серия норм МАГАТЭ по безопасности.

URL: http://www-pub.iaea.org/MTCD/publications/PDF/Pub1189_web.pdf стр.89-107, № NS-G-1.10. Вена. 2008.). Оболочки формируют внутренний и наружный объемы радиационной защиты реактора. При этом внутренняя «первичная защитная оболочка» (ПЗО) локализует парогазовую смесь после предохранительных клапанов реактора, размещенных во внутреннем объеме ПЗО. Внешняя оболочка защищает корпус реактора от внешних воздействий и служит локализующим объемом для сброса парогазовой смеси при срабатывании предохранительных клапанов ПЗО. Из объема между корпусами оболочек парогазовая смесь отводится в систему очистки - систему выброса отфильтрованного воздуха из кольцевого пространства.

Однако такая конструкция защитных оболочек и расположенных в них систем безопасности не позволяет обеспечивать надежное предотвращение образования взрывоопасных концентраций водорода, что может привести к взрыву и, как следствие, к разрушению оболочек и выходу радионуклидов в окружающую среду. Это объясняется особенностями процессов очистки парогазовой смеси от радионуклидов и утилизации водорода, которые реализуются в известных системах локализации пара после предохранительных клапанов (СЛППК) на АЭС.

Также известны устройства очистки парогазовой смеси от радиоактивности с несколькими ступенями очистки, где на первой ступени удаляется основная масса изотопов, а последующие ступени представляют собой окончательную - «тонкую» очистку. Например, в технологической схеме корпусного кипящего реактора (BWR) сброс радиоактивного пара после предохранительных клапанов производится в бассейн залива активной зоны, который является первой ступенью очистки. В бассейне, расположенном внутри ПЗО, при интенсивной конденсации пара происходит локализация радиоактивных продуктов коррозии, а неконденсированные радиоактивные газы (Xe, Kr) выходят в атмосферу ПЗО. Радиоактивные газы затем локализуются на следующей ступени очистки - в специальных фильтрах.

Как правило, в качестве фильтров применяют углесодержащие сорбенты, которые локализуют радиоактивные газы: изотопы йода, цезия, криптона. Применяют и другие материалы.

Известно устройство, в котором в качестве второй ступени очистки потоков парогазовых смесей, образующихся при сбросе избыточного давления из-под защитных оболочек корпуса реактора, применяется "Термоксид" - неорганические сферогранулированные материалы на основе гидратированных оксидов циркония, титана и олова [патент РФ № 2197762, МПК G21F 9/02, G21C 9/004, опубликован 27.01.2003]. «Термоксид», локализуя изотопы йода, не эффективен в очистке от радиоактивных газов (Xe и Kr).

Многоступенчатая схема локализации пара после предохранительных клапанов применяется и для другого типа водо-водяного реактора: реактора с водой под давлением. При повышении давления в первом контуре срабатывает предохранительный клапан, сбрасывающий теплоноситель из парового компенсатора давления в барботер. В барботере происходит локализация радиоактивных продуктов коррозии. Если давление в барботере в свою очередь превышает допустимое, то среда первого контура выбрасывается в помещение ПЗО. Снижение давления внутри ПЗО при выходе теплоносителя производится с помощью распыления в паровоздушной среде охлаждающей воды. Наряду с функцией снижения давления спринклерная система обеспечивает выведение радиоактивных продуктов из атмосферы ПЗО. Для выведения радиоактивных продуктов из атмосферы ПЗО в распыляемую воду добавляются химические вещества. Например, для связывания йода на реакторах типа ВВЭР добавляется специальный раствор с боратом калия. Окончательная очистка газов, заполняющих внутренний объем ПЗО корпуса реактора и кольцевого пространства между оболочками, производится с помощью аэрозольных фильтров и системы выброса отфильтрованных газов в вентиляционную трубу.

Известен способ подавления радиоактивности пара после предохранительных клапанов водо-водяного реактора, который реализован с помощью устройства, находящегося внутри ПЗО и объединяющего в себе несколько ступеней локализации: конденсации пара и очистки парогазовой смеси. В этом устройстве для очистки потоков парогазовых смесей, образующихся при сбросе избыточного давления, в качестве первой ступени очистки используется резервуар высокого давления с моющим раствором [патент РФ № 2300151, МПК G21C 9/00, G21C 15/16, G21C 15/18, опубликован 27.05.2007]. Внутри резервуара расположены смешивающие устройства струйного типа, устройства для распределения парожидкостной смеси по сечению резервуара, а также каплеотделители из стекловолокна.

В известных конструкциях предусмотрено предотвращение образования взрывоопасных концентраций водорода, который вместе с радиоактивными газами выходит в атмосферу ПЗО после срабатывания предохранительного клапана реактора [патент РФ № 1779191, МПК G21C 9/04, опубликован 27.07.1996]. Для сжигания водорода в этой конструкции СЛППК предназначены пассивные каталитические рекомбинаторы водорода на основе платины, родия, осмия, иридия, рутения или палладия, расположенные в верхних точках ПЗО.

Недостатком этой конструкции, предусматривающей сброс пара после предохранительных клапанов в объем под защитную оболочку, является высокая влажность парогазовой смеси, которая является следствием действий систем по снижению давления внутри ПЗО и оказывает существенное влияние на снижение работоспособности каталитических рекомбинаторов и аэрозольных фильтров с углесодержащими сорбентами. Например, адсорбционные свойства широко применяемого в атомной энергетике активированного угля СКТ (сернокислого торфяного) практически полностью исчезают при его увлажнении. Поэтому для снижения относительной влажности парогазовой смеси в установках подавления активности перед угольными адсорберами приходится устанавливать теплообменники, охлаждаемые технической водой, цеолитовые осушители, термоэлектрические холодильники [патент РФ № 2168778, МПК G21F 9/02, G21C 9/00, опубликован 10.06.2001]. Пассивные каталитические рекомбинаторы водорода также теряют свою эффективность при увлажнении: насыщенный пар конденсируется в порах катализатора, препятствуя проникновению водорода к активной поверхности оборудования. Поэтому для снижения относительной влажности парогазовой смеси в установках каталитического сжигания водорода перед поступлением в контактный аппарат парогазовую смесь перегревают на 50°С и более или используют низкотемпературный катализатор [патент РФ № 2360734, МПК B01J 21/06, B01J 21/04, G21C 9/06, B82B 1/00, опубликовано 10.07.2009]. Таким образом, влажность парогазовой смеси существенно усложняет конструкцию СЛППК, увеличивает вероятность образования «гремучей» смеси в верхней части под защитной оболочкой и вероятность взрывного разрушения защитных оболочек.

Задачей изобретения является создание устройства для очистки радиоактивной парогазовой смеси при аварийном выбросе водо-водяного ядерного реактора, в котором в максимальной степени учтены недостатки каталитического способа утилизации водорода, а также особенности поведения радиоактивных изотопов в различных средах и особенности фазового (вода-пар) переноса радиоактивности.

Поставленная задача достигается при использовании предлагаемого изобретения, технический результат которого состоит в обеспечении радиационной безопасности и взрывобезопасности в условиях аварийного срабатывания предохранительных клапанов водо-водяного реактора за счет отведения парогазовой смеси за пределы ПЗО реактора.

Указанный технический результат достигается тем, что устройство для очистки радиоактивной парогазовой смеси при аварийном выбросе водо-водяного ядерного реактора включает защитную оболочку с размещенными в ней предохранительными клапанами, соединенными трубопроводом с последовательно установленными жалюзийным сепаратором и пароструйным эжектором, расположенными вне защитной оболочки, причем сепаратор в верхней части соединен с гидроемкостью, снабженной ресиверами, а в нижней части соединен с емкостью для сбора отсепарированной жидкости, эжектор размещен в бассейне, по периметру которого установлены перфорированные трубы, соединенные с ресиверами, бассейн снабжен воздушным теплообменником и установленным над ним вытяжным зонтом, соединенным с трубой выдержки газов, в которой размещены аэрозольные фильтры, при этом труба выдержки газов соединена сдувочными линиями с сепаратором и трубопроводом, а гидроемкость и бассейн заполнены щелочным раствором.

В частном варианте реализации устройства гидроемкость заполнена 1% щелочным раствором.

В частном варианте реализации устройства бассейн заполнен щелочным раствором рН>8.

В частном варианте реализации устройства аэрозольные фильтры выполнены из углесодержащей ткани.

Сущность изобретения поясняется графическими иллюстрациями.

На фиг.1 представлено устройство для очистки радиоактивной парогазовой смеси при аварийном выбросе водо-водяного ядерного реактора.

На фиг.2 представлено подключение устройства для очистки радиоактивной парогазовой смеси при аварийном выбросе водо-водяного ядерного реактора к трубопроводам после предохранительных клапанов к действующему водо-водяному энергетическому реактору.

На фиг.1, 2 позициями обозначены:

1 - реактор;

2 - защитные оболочки;

3 - предохранительные клапана;

4 - трубопровод;

5 - гидроемкость;

6 - ресиверы;

7 - сепаратор;

8 - герметичная емкость;

9 - пароструйный эжектор;

10 - бассейн;

11 - перфорированные трубы;

12 - вытяжной зонт;

13 - труба выдержки;

14 - аэрозольные фильтры;

15 - воздушный теплообменник;

16 - сдувочные линии;

17 - барботер;

18 - спринклерная система;

19 - система выброса отфильтрованного воздуха из кольцевого пространства;

20 - система отвода тепла;

21 -бак с водой;

22 - система каталитического сжигания водорода в верхних точках ПЗО.

Устройство для очистки радиоактивной парогазовой смеси при аварийном выбросе водо-водяного ядерного реактора работает следующим образом.

Парогазовую смесь через предохранительные клапана 3 реактора 1 подают по трубопроводу 4, расположенному за пределами защитных оболочек 2 сначала на сепаратор 7 жалюзийного типа. В трубопроводе 4, через который подают парогазовую смесь на сепаратор 7, организован подвод воды для увлажнения пара (на фиг. не показан), поскольку парогазовая смесь после предохранительного клапана 3 становится перегретой. Необходимость установки жалюзийного сепаратора 7 обусловлена наличием волнообразных пластин, парогазовая смесь резко поворачивается несколько раз, в результате чего капельки влаги под действием инерционных сил попадают на стенки и стекают вниз, таким образом, парогазовая смесь отделяется от воды.

В сепараторе 7 радиоактивные продукты коррозии локализуются в воде. Эти радиоактивные вещества преимущественно находятся во взвешенных частицах, которые выносятся только с капельной влагой. Также в конденсате задерживаются изотопы 24 Na, 18F, трития.

Далее производится увлажнение пара для абсорбции радиоактивного 131I. Для этого из гидроемкости 5 выдавливается 1% щелочной раствор (NaOH или КОН) сжатым воздухом, подаваемым от ресиверов 6. Щелочной раствор подается в разбрызгивающее устройство входного патрубка сепаратора 7.

Отсепарированная жидкость из сепаратора 7 отводится в герметичную емкость 8. Предварительное увлажнение пара и отвод отсепарированной жидкости позволяют обеспечить снижение активности пара.

Очищенная от радиоактивных продуктов коррозии и частично от 131I, 137Cs парогазовая смесь от сепаратора 7 по трубопроводу 4 поступает на вторую ступень очистки. Этой ступенью является бассейн 10, который играет роль пассивного конденсатора парогазовой смеси и окончательной очистки от радиоактивных продуктов коррозии. В бассейне 10 поддерживается щелочная среда (вода) с pHустройство для очистки радиоактивной парогазовой смеси при аварийном   выбросе водо-водяного ядерного реактора, патент № 2523436 8. За счет этого через зеркало испарения бассейна 10 не выносится 131I и могут выйти только не растворенные в воде газообразные продукты деления (Xe, Kr) и водород. Внутри бассейна 10 находится пароструйный эжектор 9 для конденсации подводимой парогазовой смеси, соединенный с трубопроводом 4.

Система пассивного типа обеспечивает полную конденсацию парогазовой смеси за счет применения пароструйного эжектора 9 и исключает ее выброс через зеркало испарения бассейна 10.

Для локализации радиоактивных газов и отведения водорода над бассейном 10 установлен вытяжной зонт 12. Вытяжной зонт 12 соединен с вертикальной проточной трубой для выдержки газов - трубой выдержки 13.

За счет задержки газов происходят:

- распад гамма-активных короткоживущих изотопов, включая 16N;

- образование долгоживущих негазообразных продуктов деления из газообразных предшественников.

Образовавшиеся изотопы в виде крупнодисперсных аэрозолей могут находиться в воздухе непродолжительное время и оседают на трубе выдержки 13.

Размеры (сечение и высота) трубы выдержки 13 выбирают с таким расчетом, чтобы время выдержки газов было не менее 20 минут - времени практически полного распада наиболее долгоживущего газа 137Xe и превращения его в дочерний изотоп биологически опасного 137Cs.

На конце трубы выдержки 13 устанавливаются аэрозольные фильтры 14 из углесодержащей ткани для гарантированного исключения проскоков в атмосферу радиоактивных веществ. В бассейне 10 происходит полная конденсация парогазовой смеси, как за счет объема воды, так и за счет работы пассивной системы охлаждения воздушным теплообменником 15. Поэтому работоспособность аэрозольных фильтров 14 обеспечивается даже при длительном открытии предохранительного клапана 3.

Водород, выходящий с поверхности бассейна 10, разбавляется воздухом для исключения образования взрывоопасной концентрации в трубе выдержки 13. Для этого над поверхностью воды по периметру бассейна 10 расположены перфорированные трубы 11, к которым подключены ресиверы 6 для подачи воздуха. Для исключения скопления водорода в устройстве после закрытия предохранительных клапанов 3 реактора 1 из верхних («тупиковых») точек сепаратора 7 и трубопровода 4 предусмотрены сдувочные линии 16 в трубу выдержки 13.

Данное устройство может быть применено при модернизации действующих АЭС с водо-водяными энергетическими реакторами различного типа (фиг.2). К трубопроводу после предохранительных клапанов 3, сбрасывающих парогазовую смесь во внутренний «воздушный» объем ПЗО (в реакторах типа BWR - в бассейн залива активной зоны), подключается трубопровод 4, который прокладывается через проходки в защитных (локализующих) оболочках и подключается к устройству для очистки радиоактивной парогазовой смеси при аварийном выбросе водо-водяного ядерного реактора. В данной технологической схеме будет производится двухступенчатая очистка от радиоактивных продуктов коррозии: в бассейне 10 и в сепараторе 7.

Таким образом, при срабатывании предохранительных клапанов 3 первого контура исключаются из работы:

- спринклерная система 18, подключенная к системе отвода тепла 20 из ПЗО и к баку с водой 21;

- система каталитического сжигания водорода 22 в верхних точках ПЗО;

- система выброса отфильтрованного воздуха из кольцевого пространства 19, расположенная между корпусами защитных оболочек 2.

Эти системы остаются в составе ядерной установки и используются в режимах нормальной эксплуатации и при аварии с выбросом теплоносителя во внутренний объем ПЗО.

Безопасность данного технического решения достигается за счет:

- эффективной очистки и использования в пассивных системах свойств фазового переноса радиоактивности: продуктов коррозии, газообразных продуктов, аэрозолей, включая 131I;

- постоянного отведения водорода в атмосферу и исключения из схемы локализации пара установки сжигания водорода.

Обеспечение радиационной безопасности и взрывобезопасности с помощью данного устройства заключается в том, что:

- очистка радиоактивной парогазовой смеси осуществляется в пределах реакторной установки на пассивной системе многоступенчатой локализации с учетом особенностей фазового переноса изотопов,

- отвод очищенной от радиоактивности парогазовой смеси производится в атмосферу,

- утилизация водорода производится отведением его в атмосферу без установки сжигания водорода внутри ПЗО.

Класс G21F9/02 обработка газообразных отходов

алюмосиликатный фильтр для высокотемпературной хемосорбции паров изотопов цезия -  патент 2498430 (10.11.2013)
способ улавливания хлороводорода -  патент 2494482 (27.09.2013)
сорбционно-фильтрующий многослойный материал и содержащий его фильтр -  патент 2487745 (20.07.2013)
способ и система концентрирования и утилизации инертных радиоактивных газов из газоаэрозольных выбросов энергоблоков атомных электростанций -  патент 2481658 (10.05.2013)
способ получения сорбента для улавливания летучих форм радиоактивного йода -  патент 2479347 (20.04.2013)
минеральная композиция для улавливания водорода, способ ее приготовления и применение минеральной композиции -  патент 2446006 (27.03.2012)
способ получения сорбента для удаления радионуклидов йода и/или его органических соединений -  патент 2414294 (20.03.2011)
способ очистки газовых потоков от йода -  патент 2414280 (20.03.2011)
установка для очистки воздуха -  патент 2406169 (10.12.2010)
сорбент для улавливания летучих форм радиоактивных и стабильных изотопов из газовой фазы -  патент 2355056 (10.05.2009)
Наверх