способ конверсии метана
Классы МПК: | C01B3/38 с использованием катализаторов C10G9/34 прямым контактом с предварительно нагретыми средами, например с расплавленными металлами или солями |
Автор(ы): | Власов Олег Анатольевич (RU), Мечев Валерий Валентинович (RU) |
Патентообладатель(и): | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" (RU) |
Приоритеты: |
подача заявки:
2012-12-25 публикация патента:
10.08.2014 |
Изобретение относится к способам каталитической конверсии метана и может быть использовано в топливной, химической и металлургической промышленности. Способ конверсии метана включает взаимодействие метана с водяным паром на никельсодержащем катализаторе. В качестве катализатора используют расплав никельсодержащей меди с содержанием никеля до 3 %, через который продувают парогазовую смесь в течение 0,5-1,2 с при температуре расплава 1250-1400°С. Изобретение позволяет исключить закоксовывание катализатора на основе никеля. 1 табл.
Формула изобретения
Способ конверсии метана, включающий взаимодействие метана с водяным паром на никельсодержащем катализаторе, отличающийся тем, что в качестве катализатора используют расплав никельсодержащей меди с содержанием никеля до 3%, через который продувают парогазовую смесь в течение 0,5-1,2 с при температуре расплава 1250-1400°C.
Описание изобретения к патенту
Изобретение относится к способам каталитической конверсии метана и может быть использовано в топливной, химической и металлургической промышленности.
Известен способ конверсии метана, осуществляемый во вторичном риформинге путем взаимодействия метана с кислородом воздуха, водяным паром и диоксидом углерода на никельсодержащем катализаторе марки ГИАП-3-6Н ТУ 113-03-313-85, ГИАП-8 ТУ 14-03-31-46-87 и других (Катализаторы и процессы с их применением в азотной промышленности. Демиденко И.М., Янковский Н.А., Степанов В.А., Никитина Э.Ф., Кравченко Б.В. Изд. г.Горловка, 1998, с.15-40).
Недостатком указанного способа является большой расход катализатора из-за полной его замены после пробега или из-за повторного использования отработанного катализатора после отсева пыли и мелочи без дополнительной его подготовки.
Наиболее близким по технической сущности и достигаемому результату является способ конверсии метана (патент РФ № 2241657 от 16.04.2001, опубл. 10.12.2004), включающий взаимодействие метана с водяным паром на никельсодержащем катализаторе (катализатор представляет собой смесь свежего с отработанным, предварительно отсеянным от пыли, мелочи и отделенным от деформированных гранул, гранул с белым налетом) при соотношении пар:газ (0,9-1,2):1, при объемной скорости газа 4000-4500 ч-1, температуре 1002-1245°С, давлении (32,5-33,5)·105 Па, сопротивлении в конверторе (0,7-0,9)·105 Па, концентрации метана на входе 9-11% до достижения концентрации метана на выходе 0,35% и (или) повышения сопротивления в конверторе выше 0,9-105 Па, остановленный конвертор перегружают катализатором и вновь включают в работу.
Недостатками данного способа являются сложность процесса, связанная с периодической сменой катализатора.
Задачей изобретения является упрощение процесса.
Достигается это тем, что согласно заявленному способу конверсии метана, включающему взаимодействие метана с водяным паром на никельсодержащем катализаторе при соотношении пар:газ (0,9-1,2):1 объемных ед., в качестве катализатора используют расплав никельсодержащей меди с содержанием никеля до 3%, через который продувают парогазовую смесь. Время пребывания смеси в расплаве 0,5-1,2 с, температура расплава 1250-1400°C.
Используемые в настоящее время в качестве катализатора сплавы на основе никеля имеют основной недостаток закоксовываться, причем при низких температурах за счет кокса, образовавшегося в результате реакции Будуара, при высоких температурах за счет диссоциации метана. Таким образом, закоксовывание происходит во всем диапазоне температур (Крылов О.В. Углекислотная конверсия метана в синтез-газ // Российский химический журнал. 2000. т.44. № 1. С.19-33).
В нашем случае при содержании никеля до 3% в расплаве закоксовывание практически отсутствует.
Ограничение времени пребывания смеси в расплаве менее 0,5 с, ведет к резкому снижению конверсии метана, а увеличение его более 1,2 с ведет к необоснованному увеличению времени при практически неизменном выходе конверсионного газа. Температурный интервал 1250-1400°C ограничен снизу высокой вязкостью расплава и затрудненной продувкой газа через расплав, сверху стойкостью футеровки.
Способ осуществляли подачей через алундовую трубку смеси пара и метана (в соотношении 1:1) в расплав никельсодержащей меди в контакте смеси с расплавом в течение не менее 0,5 с при 1200-1400°C. Содержание никеля в меди составляло до 3%. Глубина расплава во всех опытах составляла 14 см. В связи с тем, что при конверсии метана с водяным паром идет реакция:
Н2O+CH4=CO+3H2,
определяли содержание CO и H2, данные опытов приведены в таблице 1.
Таблица 1 | ||||
Состав меди | Т, °С | Время, с | Н2, % | СО, % |
Cu черновая (1,8% Ni) | 1200 | 0,5 | 64 | 19 |
Cu, электрол. | 1250 | 0,5 | 68 | 23 |
Cu, 1,3% Ni | 1400 | 0,5 | 71 | 21 |
Cu, 3% Ni | 1280 | 1,2 | 73 | 17 |
Из таблицы 1 видно, что общий выход H2 и СО достигает 92%. Использовать данное изобретение можно на предприятиях цветной металлургии, на природном газе, например в Норильске, это даст возможность достичь экономии природного газа до 25-30%.
Класс C01B3/38 с использованием катализаторов
Класс C10G9/34 прямым контактом с предварительно нагретыми средами, например с расплавленными металлами или солями