Соединения, имеющие свойства молекулярных сит, но не имеющие катионообменных свойств: .кристаллические силикаты-полиморфы, например силикалиты – C01B 37/02

МПКРаздел CC01C01BC01B 37/00C01B 37/02
Раздел C ХИМИЯ; МЕТАЛЛУРГИЯ
C01 Неорганическая химия
C01B Неметаллические элементы; их соединения
C01B 37/00 Соединения, имеющие свойства молекулярных сит, но не имеющие катионообменных свойств
C01B 37/02 .кристаллические силикаты-полиморфы, например силикалиты

Патенты в данной категории

УПОРЯДОЧЕННЫЙ МЕЗОПОРИСТЫЙ КРЕМНИЙОКСИДНЫЙ МАТЕРИАЛ

Изобретение относится к материалам на основе оксидов кремния. Упорядоченный мезопористый кремнийоксидный материал с однородными по размеру порами в диапазоне от 4 до 30 нм характеризуется отношением Q3 к Q4 для атомов кремния менее 0,65. Материал синтезируют в слабокислых или нейтральных условиях с использованием силиката щелочного металла, амфифильного блоксополимера, буфера с рН, находящимся в интервале от 5 до 7, и, возможно, соединения тетраалкиламмония. Материал имеет двумерную гексагональную структуру упорядоченных мезопористых кремнийоксидных материалов, обозначенных СОК-12. Размер мезопор находится предпочтительно в диапазоне от 4 до 12 нм. Размер пор может быть точно отрегулирован путем варьирования условиями синтеза. Полученные упорядоченные мезопористые кремнийоксидные материалы эффективны при их использовании в качестве материалов-носителей для молекул плохо растворимых лекарственных препаратов и для пероральных лекарственных форм с немедленным высвобождением. 3 н. и 10 з.п. ф-лы, 48 ил., 2 табл., 24 пр.

2476377
патент выдан:
опубликован: 27.02.2013
СОДЕРЖАЩИЙ БЛАГОРОДНЫЙ МЕТАЛЛ ТИТАНОСИЛИКАТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Изобретение относится к титаносиликатным материалам и способам их получения. Описан содержащий благородный металл титаносиликатный материал, являющийся катализатором, характеризующийся тем, что упомянутый материал представлен оксидной формой xTiO 2·100SiO2·yEOm·zE, где x составляет в диапазоне от 0,001 до 50,0; (y+z) составляет в диапазоне от 0,0001 до 20,0 и y/z<5; E представляет собой один или более благородных металлов, выбранных из группы, состоящей из Ru, Rh, Pd, Re, Os, Ir, Pt, Ag и Au; m является числом, отвечающим степени окисления E; и кристаллические зерна упомянутого материала обладают полой структурой или изогнутой структурой. Описан способ получения указанного выше материала, включающий следующие стадии: (1) гомогенное смешивание титаносиликата, защитного средства, источника благородного металла, восстановителя, источника щелочи с водой с получением смеси, обладающей соотношением титаносиликат:защитное средство:источник щелочи:восстановитель:источник благородного металла:вода 100:(0,0-5,0):(0,005-5,0):(0,005-15,0):(0,005-10,0):(200-10000), где титаносиликат рассчитывают в граммах; защитное средство, источник щелочи, восстановитель и воду рассчитывают в молях; а источник благородного металла рассчитывают в граммах простого вещества благородного металла; и (2) подачу смеси, полученной на стадии (1), в реакционный сосуд, реагирование при условиях гидротермальной обработки, выделение продукта с получением титаносиликатного материала, причем упомянутые условия гидротермальной обработки относятся к гидротермальной обработке в течение 2-360 ч при температуре 80-200°С и аутогенном давлении. Описан способ получения указанного выше материала, включающий следующие стадии: (1) гомогенное смешивание источника титана, источника кремния, источника щелочи, защитного средства, источника благородного металла с водой с получением смеси, обладающей соотношением источник кремния:источник титана:источник щелочи:источник благородного металла:защитное средство:вода 100:(0,005-50,0):(0,005-20,0):(0,005-10,0):(0,0001-5,0):(200-10000), где источник кремния рассчитывают как SiO2, источник титана рассчитывают как TiO2; и источник благородного металла рассчитывают как простое вещество; гидротермальную кристаллизацию смеси в течение по меньшей мере 2 ч при 120-200°С и аутогенном давлении, извлечение, фильтрование, сушку и прокаливание продукта с получением промежуточного кристаллического материала; (2) подачу промежуточного кристаллического материала, полученного на стадии (1), в фильтрат, полученный после фильтрования на стадии (1), добавление восстановителя в молярном соотношении 0,1-10 к источнику благородного металла, добавленному на стадии (1), гидротермальную обработку в течение 2-360 ч при 80-200°С и аутогенном давлении, и выделение продукта с получением титаносиликатного материала. Технический результат - получен материал, характеризующийся увеличением селективности, каталитической активности в реакциях окисления. 3 н. и з.п. ф-лы; 3 табл.; 24 ил.; 12 пр.; 4 ср.пр.

2459661
патент выдан:
опубликован: 27.08.2012
СПОСОБ СТАБИЛИЗАЦИИ МЕЗОСТРУКТУРЫ СИЛИКАТНЫХ МАТЕРИАЛОВ ТИПА МСМ-41

Изобретение относится к синтезу мезопористого материала типа МСМ-41. Способ предусматривает стабилизацию структуры материала в процессе его синтеза, согласно которому стадию гидротермальной обработки в автоклаве осуществляют при непрерывном перемешивании реакционной смеси при 105-135°С в течение 2-4 часов при мольном соотношении реагентов 1SiO2:0,6±0,2NH 4Cl:1,6±0,2NH3:150H2O. Изобретение позволяет осуществить эффективную стабилизацию мезоструктуры материала МСМ-41 при невысоком давлении насыщенных паров в автоклаве. 2 ил., 2 табл., 2 пр.

2447022
патент выдан:
опубликован: 10.04.2012
НАНОКОМПОЗИТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Изобретение относится к области неорганической химии, в частности к синтезу пористых наноструктур. Предложен композиционный материал, содержащий активную фазу в виде гетерополикислоты и/или ее соли, введенную в матрицу пористого неорганического носителя, в котором активная фаза имеет форму наночастиц, анион гетерополикислоты которых связан со структурообразующими элементами матрицы ионной связью и введен в матрицу на стадии ее синтеза in situ. Предложен также способ получения материала, согласно которому введение гетерополикислоты в поры носителя осуществляют на стадии синтеза матрицы пористого носителя in situ, путем взаимодействия алкоксида структурообразующего элемента синтезируемой матрицы с гетерополикислотой и/или ее солью в присутствии соли того же или другого структурообразующего элемента матрицы, гомогенизации системы с получением золя, гелирования золя, созревания геля и его термообработки. Изобретение позволяет получить стабилизированный нанокомпозиционный материал с повышенной термостойкостью и высокой кислотностью, активная фаза которого прочно связана с носителем. 2 н. и 11 з.п. ф-лы, 3 табл., 3 ил.

2413573
патент выдан:
опубликован: 10.03.2011
СИНТЕТИЧЕСКИЙ ПОРИСТЫЙ КРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ ITQ-13, ЕГО СИНТЕЗ И ПРИМЕНЕНИЕ

Описан новый синтетический пористый кристаллический материал, обозначенный ITQ-13, охарактеризованный структурой на фиг.1 и рентгенограммой. Описаны также способы изготовления ITQ-13 в его силикатной и боросиликатной формах в присутствии HF с использованием в качестве направляющего агента дигидроксида гексаметония, а в качестве источника кремния - гидролизованного тетраэтилортосиликата. Содержащий алюминий ITQ-13 можно получить из боросиликатного материала путем обмена на Al. ITQ-13 эффективен в качестве кислотного катализатора и в качестве адсорбента. 6 н. и 6 з. п. ф-лы, 6 ил., 14 табл.

2293058
патент выдан:
опубликован: 10.02.2007
СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА С МИКРОМЕЗОПОРИСТОЙ СТРУКТУРОЙ

Предлагается материал с микро-мезопористой структурой и способ получения материала, обладающего кислотными центрами с энергией активации десорбции аммиака 140-190 кДж/моль, доля которых в общем спектре кислотности составляет не менее 0,5, и развитой регулярной пористой структурой с объемом пор не менее 0,45 см 3/г, в которой доля микропор составляет 0.01-0.60, а доля мезопор составляет 0.10-0.85. Способ включает суспендирование микропористых кристаллических силикатов с цеолитной структурой, имеющих состав анионного каркаса Т2O3*(10-1000)SiO 2, где Т - элементы, выбранные из группы, состоящей из р-элементов III группы или d-элементов IV-VIII группы, или их смеси, в щелочном растворе до достижения остаточного содержания цеолитной фазы в суспензии 1-60 мас.%, введение в суспензию силиката раствора катионного поверхностно-активного вещества с последующим добавлением кислоты до образования геля и гидротермальную обработку геля с выделением готового продукта. Изобретение обеспечивает получение материала, имеющего кристаллическую структуру исходного силиката. 2 н. и 4 з.п. ф-лы, 3 ил., 2 табл.

2282587
патент выдан:
опубликован: 27.08.2006
МОЛЕКУЛЯРНЫЕ СИТА И СПОСОБ ИХ ПОЛУЧЕНИЯ

Изобретение относится к составам синтезных смесей различной щелочности, образующих мелкие кристаллы MFI, которые являются несферическими. Предложен способ получение цеолита MFI путем кристаллизации смеси, полученной смешением двух растворов, имеющих различные молярные соотношения ОН/SiO2 и различные соотношения органического шаблона к SiO2. Изобретение позволяет получить кристаллы, способные к образованию стабильной коллоидной суспензии. 5 с. и 12 з.п. ф-лы, 4 табл.
2185228
патент выдан:
опубликован: 20.07.2002
МОЛЕКУЛЯРНЫЕ СИТА, СПОСОБ ИХ ПОЛУЧЕНИЯ, СПОСОБ РАЗДЕЛЕНИЯ ТЕКУЧЕЙ СМЕСИ, СПОСОБ КАТАЛИЗА ХИМИЧЕСКОЙ РЕАКЦИИ (ВАРИАНТЫ) С ИХ ИСПОЛЬЗОВАНИЕМ

Изобретение относится к молекулярным ситам. Описаны структуры, содержащие верхний слой кристаллического молекулярного сита на подложке, причем кристаллы частично ориентированы перпендикулярно плоскости слоя, а между подложкой и верхним слоем расположен плотный промежуточный слой кристаллического молекулярного сита. Предложен способ получения структуры и использование структуры. Изобретение обеспечивает получение селективных сорбентов и катализаторов. 6 с. и 18 з.п. ф-лы, 9 ил., 5 табл.
2169039
патент выдан:
опубликован: 20.06.2001
СПОСОБЫ ПОЛУЧЕНИЯ КРИСТАЛЛИЧЕСКОГО ЦЕОЛИТА

Описан способ получения кристаллического цеолита из реакционной смеси, содержащей количество воды, достаточное только для того, чтобы, при желании, реакционной смеси можно было бы придать определенную форму. По данному способу реакционную смесь нагревают в условиях кристаллизации и в отсутствие внешней жидкой фазы, так что перед высушиванием кристаллов нет необходимости в удалении избыточной жидкости из закристаллизованного материала. Способ позволяет сократить количество воды для кристаллизации и получить формованные цеолиты без добавления связующего. 2 с. и 40 з.п.ф-лы.
2137713
патент выдан:
опубликован: 20.09.1999
Наверх