Покрытие вакуумным испарением, распылением металлов или ионным внедрением материала, образующего покрытие: ..ионное внедрение – C23C 14/48

МПКРаздел CC23C23CC23C 14/00C23C 14/48
Раздел C ХИМИЯ; МЕТАЛЛУРГИЯ
C23 Покрытие металлических материалов; покрытие других материалов металлическим материалом; химическая обработка поверхности; диффузионная обработка металлического материала; способы покрытия вакуумным испарением, распылением, ионным внедрением или химическим осаждением паров вообще; способы предотвращения коррозии металлического материала, образования накипи или корок вообще
C23C Покрытие металлического материала; покрытие других материалов металлическим материалом; поверхностная обработка металлического материала диффузией в поверхность путем химического превращения или замещения; способы покрытия вакуумным испарением, распылением, ионным внедрением или химическим осаждением паров вообще
C23C 14/00 Покрытие вакуумным испарением, распылением металлов или ионным внедрением материала, образующего покрытие
C23C 14/48 ..ионное внедрение

Патенты в данной категории

СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ

Изобретение относится к области ионно-лучевой вакуумной обработки материалов и может быть использовано в машиностроении для повышения эксплуатационных свойств деталей машин и механизмов. Способ включает обработку поверхности деталей из конструкционной стали потоком ионов меди и свинца с использованием катода-имплантера, изготовленного из монотектического сплава меди со свинцом, в который контактным легированием вводят 5-11% алюминия, а имплантацию осуществляют с дозой (4,5-6,5)·1017 ион/см 2. Изобретение направлено на повышение коррозионной стойкости деталей из конструкционной стали, работающих в условиях трения с приложением внешней нагрузки к трущимся деталям в коррозионной среде. 4 ил., 1 табл.

2529337
патент выдан:
опубликован: 27.09.2014
СПОСОБ ИМПУЛЬСНО-ПЕРИОДИЧЕСКОЙ ИОННОЙ ОЧИСТКИ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ ДИЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА ИЛИ ПРОВОДЯЩЕГО МАТЕРИАЛА С ДИЭЛЕКТРИЧЕСКИМИ ВКЛЮЧЕНИЯМИ

Изобретение относится к ионной очистке поверхности изделий из диэлектрического материала или проводящего материала с диэлектрическими включениями. Изделия размещают на проводящем держателе, генерируют плазму с импульсно-периодическим ускорением ее ионов путем прохождения плазменного потока через ускоряющий зазор и с обеспечением поочередного облучения поверхности изделий потоком ускоренных ионов и плазмой при подаче на проводящий держатель высокочастотных короткоимпульсных потенциалов смещения. Длительность импульсов 0,1-10 мкс, коэффициент заполнения импульсов 50-99% и амплитуда потенциала 1-10 кВ. При этом облучение поверхности изделий ведут при длительности импульса потенциала смещения, которая меньше времени зарядки емкости конденсатора, образованного проводящим держателем и эмиссионной границей плазмы, и при длительности паузы между импульсами ускоряющего напряжения, которая меньше времени прохождения плазменного потока через ускоряющий зазор. Обеспечивается повышение эффективности короткоимпульсной, высокочастотной ионной обработки материалов. 7 з.п. ф-лы, 6 ил., 2 пр.

2526654
патент выдан:
опубликован: 27.08.2014
КОНВЕРТЕР ВАКУУМНОГО УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ В ИЗЛУЧЕНИЕ ВИДИМОГО ДИАПАЗОНА В ВИДЕ АМОРФНОЙ ПЛЕНКИ ОКСИДА КРЕМНИЯ SiOX НА КРЕМНИЕВОЙ ПОДЛОЖКЕ

Изобретение относится к люминесцентным материалам - конвертерам вакуумного ультрафиолетового излучения в излучение видимого диапазона, выполненным в виде аморфной пленки оксида кремния SiOX на кремниевой подложке, предназначенным для создания функциональных элементов фотонных приборов нового поколения, а также для контроля жесткого ультрафиолетового излучения в вакуумных технологических процессах. Толщина аморфной пленки оксида кремния SiOX конвертера составляет 20÷70 нм. Содержание ионов кислорода в упомянутой пленке соответствует количеству, при котором стехиометрический коэффициент Х находится в пределах от 2,01 до 2,45. Увеличиваются интенсивности красного излучения конвертера, а также обеспечивается красное свечение при сохранении конверсии вакуумного ультрафиолетового излучения в видимое. 6 ил., 1 табл., 4 пр.

2526344
патент выдан:
опубликован: 20.08.2014
УСТРОЙСТВО ДЛЯ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ В НЕСАМОСТОЯТЕЛЬНОМ ТЛЕЮЩЕМ РАЗРЯДЕ

Изобретение относится к области химико-термической обработки металлов. Устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде содержит вакуумную камеру с подложкой для размещения деталей, источник питания, соединенный отрицательным полюсом с подложкой, а положительным - с корпусом камеры, термоэмиссионный электрод и второй источник питания, соединенный отрицательным полюсом с термоэмиссионным электродом, а положительным - с корпусом камеры. Термоэмиссионный электрод выполнен в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля с изменяющейся на фазой колебаний ее четных зон. Установлены математические формулы для определения величины ступеньки и радиусов дисков фазовой зонной пластинки Френеля. Обеспечивается повышение предела выносливости деталей. 2 ил.

2518047
патент выдан:
опубликован: 10.06.2014
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОДИНАМИЧЕСКОГО ПОДШИПНИКА ПОПЛАВКОВОГО ГИРОСКОПА

Изобретение относится к способу изготовления газодинамического подшипника поплавкового гироскопа. Осуществляют формообразование фланца и опоры с полусферическими встречно обращенными рабочими поверхностями. Ионным травлением выполняют на рабочей поверхности опоры диаметра D аэродинамический профиль в виде канавок из равновеликих отрезков сферических винтовых линий. Переменную глубину канавок в продольном сечении задают монотонным увеличением толщины элемента маски с прорезями в направлении от разъема к полюсу опоры. Переменную глубину канавок в поперечном сечении обеспечивают, выполняя второй элемент маски в виде неподвижного экрана, перпендикулярного оси ионного потока. В результате достигается высокое качество и точность выполнения газодинамического подшипника и его аэродинамического профиля. 3 ил.

2517650
патент выдан:
опубликован: 27.05.2014
СПОСОБ ИМПЛАНТАЦИИ ИОНАМИ ГАЗОВ МЕТАЛЛОВ И СПЛАВОВ

Изобретение относится к области модификации поверхности металлов и сплавов и может быть использовано в машиностроении при производстве деталей, работающих в условиях трения скольжения. В обрабатываемую поверхность поочередно имплантируют ионы азота и ионы инертного газа. Дозу имплантации ионов инертного газа устанавливают в интервале (0,1 0,25)·D, где D - доза имплантации ионами азота, которую выбирают в интервале (1 5)·1017 ион/см2. Изобретение позволяет повысить износостойкость обработанной поверхности за счет увеличения глубины приповерхностного слоя. 4 ил., 1 табл., 1 пр.

2509174
патент выдан:
опубликован: 10.03.2014
СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНОФОРА В ВИДЕ АМОРФНОЙ ПЛЕНКИ ДИОКСИДА КРЕМНИЯ С ИОНАМИ СЕЛЕНА НА КРЕМНИЕВОЙ ПОДЛОЖКЕ

Изобретение к способу получения люминофора в виде аморфной пленки диоксида кремния с ионами селена, расположенной на кремниевой подложке. Способ включает имплантацию ионов селена с энергией ионов 300±30 кэВ при флюенсе

4÷6·10 16 ион/см2 в указанную пленку и первый отжиг при температуре 900÷1000°C в течение 1÷1,5 часов в атмосфере сухого азота. При этом пленку дополнительно отжигают при температуре 500÷650°C в течение 1,5÷2,5 часов в воздушной атмосфере. Технический результат - повышение стабильности спектра фотолюминесценции люминофора, обладающего люминесцентным излучением в видимом диапазоне 380÷760 нм. 1 ил., 1 табл., 3 пр.

2504600
патент выдан:
опубликован: 20.01.2014
КАТОД УСТАНОВКИ ДЛЯ ИОННОЙ ИМПЛАНТАЦИИ

Изобретение относится к области получения мощных ионных пучков, а именно к катодам, которые могут быть использованы в установках для ионной имплантации металлов и сплавов, работающих в непрерывном и импульсном режимах. Катод выполнен из сплава меди со свинцом. Свинец содержится в количестве 36 мас.%, соответствующем монотектической точке сплава, в микроструктуре которого суммарная протяженность межфазных границ на 1 мм поверхности катода составляет 6,5 16,0 мм/мм2. Технический результат - повышение износостойкости имплантируемых деталей. 4 ил., 1 табл.

2501886
патент выдан:
опубликован: 20.12.2013
СПОСОБ НАНЕСЕНИЯ НА МЕТАЛЛИЧЕСКУЮ ДЕТАЛЬ КОМПЛЕКСНОГО ПОКРЫТИЯ ДЛЯ ЗАЩИТЫ ДЕТАЛИ ОТ ВОДОРОДНОЙ КОРРОЗИИ, СОСТОЯЩЕГО ИЗ МНОЖЕСТВА МИКРОСЛОЕВ

Изобретение относится к области атомного и химического машиностроения, а именно к способам нанесения покрытий для защиты деталей от водородной коррозии. Технический результат - повышение работоспособности, надежности и увеличение долговечности деталей с покрытием. Способ включает обезжиривание детали, размещение детали в вакуумной камере, откачку камеры до вакуума, предварительную очистку в среде инертного газа, ионную очистку/травление поверхности, осаждение слоев конденсацией с ионной бомбардировкой и охлаждение в вакууме, а затем в среде инертного газа. Размещение детали выполняют в точке фокусирования потоков не менее чем двух вакуумных дуговых источников плазмы. Предварительную очистку выполняют в среде ионизированного инертного газа. Ионную очистку/травление поверхности выполняют путем подачи на подложку сначала напряжения в диапазоне 200-500 В, затем повышают его плавно или ступенчато до 1-1,5 кВ. При этом для нанесения микрослоев покрытия используют сплавы на основе сочетаний металлов, выбранных из группы Cr, Ni, W, Nb, Zr, Ti, Al, Mo, распыляя их одновременно при вращении детали. 1 з.п. ф-лы, 2 ил.

2495154
патент выдан:
опубликован: 10.10.2013
СПОСОБ МНОГОСЛОЙНОГО НАНЕСЕНИЯ ПОКРЫТИЙ НА ПОДЛОЖКУ

Изобретение относится к технологии получения покрытий при изготовлении режущего инструмента. Осуществляют нанесение покрытия на подложку из высокоуглеродистой стали в среде инертного газа. Сначала выполняют очистку поверхности подложки потоком ионов инертного газа методом конденсации с ионной бомбардировкой (КИБ) при температуре 550-600°С. Никелевое покрытие наносят методом КИБ при температуре 550-600°С. Затем осуществляют его отжиг с повышением температуры до 650-700°С и последующее нанесение карбида хрома. Изобретение позволяет повысить плотность и однородность покрытий и адгезию между подложкой и первым слоем покрытия из никеля, а также - между покрытиями из никеля и карбида хрома. 1 пр.

2492276
патент выдан:
опубликован: 10.09.2013
СПОСОБ ПОЛУЧЕНИЯ ИМПЛАНТИРОВАННОГО ИОНАМИ ОЛОВА КВАРЦЕВОГО СТЕКЛА

Изобретение относится к способу получения имплантированного ионами олова кварцевого стекла из диоксида кремния с поверхностным слоем, содержащим нанокластеры олова. Упомянутый способ может быть использован при создании компонентов микро-(нано-) и оптоэлектронных устройств. Проводят имплантацию ионов олова в кварцевое стекло и отжиг имплантированного ионами олова кварцевого стекла в воздушной атмосфере. Имплантацию ионов олова проводят в импульсном режиме при длительности импульсов 0,3-0,4 мс, частоте повторения импульсов 12,5-20 Гц, импульсной плотности ионного тока 0,8-0,9 мА/см 2, дозе облучения (4,5-5)×1016 ион/см 2, энергии ионов олова 30-35 кэВ и температуре диоксида кремния 60-350°С. Отжиг проводят при температуре 800-900°С в течение 50-70 мин в воздушной атмосфере. Обеспечивается получение стекла с повышенным уровнем интенсивности излучения в ближней области инфракрасного диапазона. 2 ил., 1 табл., 3 пр.

2486282
патент выдан:
опубликован: 27.06.2013
СПОСОБ ПОВЕРХНОСТНОЙ МОДИФИКАЦИИ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ И ИЗДЕЛИЙ

Способ относится к области пучково-плазменных технологий улучшения эксплуатационных свойств конструкционных материалов и изделий, в частности к способу электровзрывного легирования. Способ включает импульсное облучение обрабатываемой поверхности ионным компонентом плазменной струи, в качестве источника ионного компонента используют продукты электрического взрыва проводников. При облучении используют коаксиально-торцевую систему электродов, интенсивность облучения поверхности выбирают, исходя из соотношения: , где , с, - коэффициент теплопроводности, удельная теплоемкость и плотность модифицируемого материала соответственно; Ph - плотность мощности поверхностного нагрева, ГВт/м2 ; Tm - температура плавления материала, K; T/ t - скорость охлаждения расплавленного поверхностного слоя, К/с. Длительность импульса облучения t* оценивают из соотношения: величина интеграла разрядного тока при электрическом взрыве проводника удовлетворяет условию: где J - интеграл разрядного тока, А2·с·м -4; jy - плотность тока через взрываемый проводник, A/m2; t - время обработки, с; Jvb - табличная величина интеграла тока для перехода проводника в парообразное состояние при температуре кипения, А2·с·м -4. Процесс электрического взрыва проводника в торцевой части коаксиальных электродов завершают до достижения максимального значения разрядного тока. Технический результат заключается в возможности достижения максимальной эффективности (псевдо)аморфизации поверхностного слоя, повышении качества поверхности вследствие отсутствия или контролируемого присутствия макрочастиц в плазменном потоке, а также в возможности контроля параметров обработки выбором момента взрыва проводника, т.е. изменением соотношения энерговкладов электрического взрыва и ускорительного механизма в системе коаксиальных электродов. 1 пр.

2486281
патент выдан:
опубликован: 27.06.2013
СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ

Изобретение относится к области машиностроения, а именно к способам ионной имплантации поверхности деталей из конструкционных сталей. Технический результат - повышение износостойкости и снижение коэффициента трения поверхности детали при трении скольжении. Способ включает имплантацию в поверхность стали ионов меди, а затем ионов свинца. При этом перед имплантацией поверхность детали обрабатывают лазерным лучом, который фокусируют в пятно формой круга с удельной плотностью излучения 260-800 Вт/мм2 , после чего пятно перемещают по обрабатываемой поверхности со скоростью 25-40 мм/с. 3 ил., 1 табл.

2482218
патент выдан:
опубликован: 20.05.2013
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ

Изобретение относится к области машиностроения, а именно к методам нанесения теплозащитных покрытий на рабочие лопатки газотурбинных двигателей и энергетических установок. Поверхность лопатки подвергают ионно-имплантационной обработке ионами одного из следующих элементов N, Y, Yt или их комбинацией. Наносят жаростойкий подслой и керамический слой. После нанесения керамического слоя ионно-плазменным методом наносят первый слой сплава на никелевой основе, второй алюминидный слой и третий слой из сплава на никелевой основе, после чего проводят диффузионный отжиг в вакууме. Имплантацию ионов проводят при энергии ионов 0,2 - 100 кэВ и плотности ионного тока от 50 мкА/см2 до 10 мА/см2. В качестве материала первого и третьего слоев, а также жаростойкого подслоя используют сплав состава, в вес.%: Сr - от 18% до 34%, Аl - от 3% до 16%, Y - от 0,2% до 0,7%, Ni - остальное или Сr - от 18% до 34%, Аl - от 3% до 16%, Y - от 0, 2% до 0,7%, Со - от 16% до 30%, Ni - остальное, и их сочетания. Для второго слоя используют сплав состава, в вес.%: Si - от 4,0% до 12,0%; Y - от 1,0 до 2,0%, Аl - остальное. В качестве керамического материала используют ZrO2-Y 2O3 в соотношении Y2О3 - 5-9 вес.%, ZrO2 - остальное. Толщина керамического слоя составляет от 20 мкм до 400 мкм, толщина жаростойкого подслоя от 15 мкм до 40 мкм, а толщины первого, второго и третьего слоев от 4 до 12 мкм каждый, но не более 28 мкм их суммарной толщины. Повышаются эксплуатационные свойства теплозащитного покрытия при одновременном повышении выносливости и циклической прочности деталей с покрытием. 19 з.п. ф-лы., 1 ил., 2 табл.

2479669
патент выдан:
опубликован: 20.04.2013
СПОСОБ ИОННО-ПЛАЗМЕННОГО ЛЕГИРОВАНИЯ ПОВЕРХНОСТИ ИЗДЕЛИЯ

Изобретение относится к плазменной обработке поверхности изделий и может быть использовано в машиностроении, электротехнике, энергетике, электронике и других областях. Способ включает формировании в камере плазменной установки в среде рабочего газа под действием высокого напряжения, приложенного к аноду и катоду, плазменного сгустка, воздействующего на обрабатываемую поверхность, с внедрением в поверхностный слой имплантируемого материала, при этом плазменный сгусток формируют при повышенном градиенте электрического поля между катодом и анодом на его выходном участке за счет уменьшения расстояния между ними без возникновения пробоя в среде рабочего газа в начальной стадии разряда и образования между анодом, имеющим расширение со стороны обрабатываемой поверхности, и обрабатываемой поверхностью горообразного плазменного индуктивного накопителя энергии, и воздействие им на обрабатываемую поверхность в интервале времени от 30 до 200 мкс.

Способ позволяет повысить прочность покрытия за счет увеличения эффективности воздействия плазменного сгустка на обрабатываемую поверхность. 3 ил., 1 пр.

2479668
патент выдан:
опубликован: 20.04.2013
СПОСОБ ИОННО-ИМПЛАНТАЦИОННОЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ ТИТАНОВЫХ СПЛАВОВ

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении. Способ включает ионную очистку ионами аргона и ионно-имплантационную обработку поверхности детали ионами азота. Ионную очистку проводят при энергии от 8 до 10 кэВ и плотности тока от 130 мкА/см2 до 160 мкА/см2 в течение от 0,3 до 1,0 часа. Ионно-имплантационную обработку поверхности детали проводят при энергии от 25 до 30 кэВ. Ионную имплантацию проводят либо в непрерывном, либо в импульсном режиме. Техническим результатом изобретения является повышение предела выносливости и циклической долговечности деталей из титановых сплавов. 11 з.п. ф-лы, 1 пр.

2479667
патент выдан:
опубликован: 20.04.2013
СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ ТИТАНОВЫХ СПЛАВОВ

Изобретение относится к области машиностроения, а именно к способам ионной имплантации поверхностей деталей из титановых сплавов. Способ ионной имплантации поверхностей деталей из титановых сплавов включает обработку поверхности деталей лазерным лучом, который фокусируют в пятно в форму круга с удельной мощностью излучения 200-450 Вт/мм2, после чего пятно перемещают по обрабатываемой поверхности со скоростью 45-70 мм/с, и проведение имплантации ионов азота с дозой (2-6)·1017 ион/см 2. Повышаются эксплуатационные свойства изделий из титановых сплавов за счет повышения износостойкости при высоких показателях усталостной прочности. 5 ил., 3 табл.

2470091
патент выдан:
опубликован: 20.12.2012
СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ

Изобретение относится к области ионно-лучевой вакуумной обработки материалов и может быть использовано в машиностроении. Способ ионной имплантации поверхности деталей из конструкционной стали включает обработку поверхности деталей бомбардировкой потоком ионов меди и свинца при использовании в качестве катода имплантера монотектического сплава меди со свинцом, в который контактным легированием вводят 7-12% олова. Имплантацию осуществляют с дозой (5,5-8,5)·1017 ион/см2. Обеспечивается повышение износостойкости при снижении коэффициента трения скольжения при приложении внешней нагрузки к трущимся деталям. 4 ил., 1 табл.

2465373
патент выдан:
опубликован: 27.10.2012
СПОСОБ УПРОЧНЕНИЯ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ ТИТАНОВЫХ СПЛАВОВ

Изобретение относится к области машиностроения и может быть использовано при изготовлении деталей двигателей, а также в медицине и других отраслях промышленности. При упрочнении поверхности изделий из титановых сплавов наносят металлическое покрытие хрома или молибдена, или циркония и обрабатывают компрессионными плазменными потоками в среде азота при давлении 0,4-0,5 кПа с плотностью энергии 10-30 Дж/см2 и количеством импульсов 2-3. Затем осуществляют азотирование компрессионными плазменными потоками при давлении азота 1-3 кПа с плотностью энергии 1-10 Дж/см2 и количеством импульсов 10-15. Отжиг изделий проводят в течение 60-75 минут. Повышается микротвердость, снижается коэффициент трения поверхностного слоя изделий за счет создания мелкодисперсных упрочняющих фаз. 1 ил., 4 табл., 125 пр.

2464355
патент выдан:
опубликован: 20.10.2012
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННЫХ СЛОЕВ НА ПОВЕРХНОСТИ СЛОЖНОПРОФИЛЬНЫХ ДЕТАЛЕЙ МЕТОДОМ ЛАЗЕРНО-ПЛАЗМЕННОЙ ОБРАБОТКИ

Установка предназначена для наноструктурирования поверхности изделий со сложной пространственной формой. Установка включает станину с устройством для установки и обработки деталей с приводами перемещения, подвижные органы для перемещения рабочего органа по трем взаимно перпендикулярным осям, лазер с устройством доставки лазерного луча и системой электропитания и управления и кабину ограждения рабочей зоны с защитными окнами. Камера выполнена прозрачной, герметизированной и снабжена двумя клапанами: для напуска технологического газа и для удаления отработанных газов. Клапаны выполнены подсоединяемыми к шлангам пневмосистемы для заполнения технологическими газами. Установка проста в эксплуатации и универсальна, полностью обеспечивает защиту обслуживающего персонала от прямого и рассеянного лазерного излучения и имеет повышенный уровень экологической безопасности при эксплуатации установки с наименьшими энергетическими потерями. 1 з.п. ф-лы, 2 ил.

2463246
патент выдан:
опубликован: 10.10.2012
СПОСОБ ПОЛУЧЕНИЯ ЛЕГИРОВАННОГО КВАРЦЕВОГО СТЕКЛА С ТЕТРАЭДРИЧЕСКОЙ КООРДИНАЦИЕЙ АТОМОВ ТИТАНА

Изобретение относится к получению легированного кварцевого стекла с тетраэдрической координацией атомов титана и может быть использовано при создании оптоэлектронных и светоизлучающих устройств. Способ получения легированного кварцевого стекла с тетраэдрической координацией атомов титана включает имплантацию ионов титана в кварцевое стекло в импульсном режиме с дозой облучения (1÷9)×10 16 см-2 при энергии ионов титана 25÷35 кэВ, импульсной плотности ионного тока 0,2÷10 мА/см 2 и температуре кварцевого стекла 250÷300°С в изотермическом режиме. Упрощается процесс легирования титаном кварцевого стекла для создания на его основе компонентов функциональных микро- и наноустройств. 1 ил., 1 табл., 5 пр.

2461665
патент выдан:
опубликован: 20.09.2012
СПОСОБ ИМПЛАНТАЦИИ КОНСТРУКЦИОННОЙ СТАЛИ ИОНАМИ МЕДИ И СВИНЦА

Изобретение относится к области машиностроения, а именно к способам ионной обработки поверхности деталей из конструкционных сталей, в частности, типа 30ХГСН2А. Технический результат - повышение усталостной прочности стали и снижение коэффициента трения детали при скольжении. Согласно способу осуществляют совместную имплантацию ионов меди и свинца в поверхность стали с помощью катода, который изготавливают из бинарного сплава меди и свинца. При этом содержание свинца в катоде составляет 25-45%. Дозу (флюенс) имплантации выбирают в пределах диапазона (1-2,5)·1017 ион/см 2, причем с увеличением содержания свинца флюенс снижают в пределах этого диапазона. 1 табл.

2458182
патент выдан:
опубликован: 10.08.2012
СПОСОБ ИМПУЛЬСНО-ПЕРИОДИЧЕСКОЙ ИОННОЙ ОБРАБОТКИ МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к ионно-лучевым технологиям получения материалов со специальными свойствами, а именно к способам и устройствам для ионной обработки изделий, и предназначено для изменения физических, механических и химических свойств поверхностных слоев металлов или сплавов. Способ включает размещение металлических изделий в вакуумной камере, очистку поверхности изделий бомбардировкой ионами и электронами, подачу ионизируемого вещества, его ионизацию для формирования ионной плазмы и ускорение ионов в плазме электрическим полем. При этом генерацию плазмы и ускорение ионов осуществляют поочередно и многократно. Устройство для реализации способа содержит заземленную металлическую вакуумную камеру с закрепленными в ней внешним электродом и опорным электродом, которые подключены к источнику напряжения. Источник напряжения подключен через блок управления к первому коммутатору, соединенному с первым высоковольтным емкостным накопителем, который подключен к средней точке вторичной обмотки высоковольтного импульсного трансформатора, и ко второму коммутатору. При этом второй коммутатор соединен со вторым высоковольтным емкостным накопителем, подключенным к первичной обмотке высоковольтного импульсного трансформатора. Технический результат - повышение рабочих свойств поверхностей изделий, увеличение их износостойкости. 2 н.п. ф-лы, 1 ил.

2454485
патент выдан:
опубликован: 27.06.2012
УСТАНОВКА ДЛЯ ВАКУУМНОЙ ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ДЛИННОМЕРНЫХ ИЗДЕЛИЙ

Изобретение относится к вакуумной ионно-плазменной технологии, а именно к устройствам для обработки длинномерных изделий. Установка содержит вакуумную камеру 1, размещенные в ней держатель изделий 12 с изолированным токоподводом и, по меньшей мере, один длинномерный электрод 2 электродугового источника плазмы, устройство нагрева изделий 6, а также источники питания вакуумно-дугового разряда 3 и устройства нагрева изделий 11. Устройство нагрева изделий 11 выполнено в виде дополнительной изолированной посредством экранов и изоляторов эмиссионной камеры 7, внутри которой установлен длинномерный катод 8 вакуумно-дугового разряда, являющийся эммитером электронов, эмиссионная камера 7 соединена с вакуумной камерой 1 посредством перфорированной перегородки 9, отверстия перфорации 10 которой расположены вдоль продольной оси катода 8 вакуумно-дугового разряда. При этом источник питания 11 устройства нагрева изделий выполнен с возможностью подключения отрицательного полюса к эмиссионной камере 7, а положительного - к держателю 12 изделий или электроду 2. Источник питания 3 вакуумно-дугового разряда выполнен с возможностью подключения отрицательного полюса к катоду 8 вакуумно-дугового разряда или электроду 2, а положительного - к эмиссионной камере 7 или вакуумной камере 1. Технический результат - повышение равномерности прогрева изделий. 1 з.п. ф-лы, 1 ил.

2450083
патент выдан:
опубликован: 10.05.2012
СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ КОНСТРУКЦИОННОЙ СТАЛИ ИОНАМИ МЕДИ И СВИНЦА

Изобретение относится к области машиностроения, а именно к способам ионной обработки поверхности деталей из конструкционных сталей. В поверхность стали имплантируют ионы меди с дозой (1-5)·10 17 ион/см2, затем проводят имплантацию ионов свинца с дозой (0,2 0,3)·D, где D - доза имплантирования ионами меди. Повышается предел усталости и снижается коэффициент трения обрабатываемых деталей. 5 ил., 1 табл.

2442843
патент выдан:
опубликован: 20.02.2012
СПОСОБ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО ПОКРЫТИЯ

Изобретение относится к области машиностроения, а именно к методам нанесения защитных покрытий на лопатки энергетических и транспортных турбин, в частности газовых турбин авиадвигателей. Технический результат - повышение жаростойкости покрытия при одновременном повышении его выносливости и циклической прочности деталей с покрытием. Способ включает ионно-имплантационную обработку поверхности лопатки, формирование внутреннего жаростойкого слоя и нанесение внешнего жаростойкого слоя с его ионной имплантацией. Ионно-имплатационную обработку поверхности лопатки производят ионами одного или нескольких элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si. При этом в качестве материала для формирования внутреннего жаростойкого слоя используют сплав состава: Cr - 18% до 30%, Al - 5% до 13%, Y - от 0,2% до 0,65%, Ni - остальное. В качестве материала для формирования внешнего жаростойкого слоя используют сплав состава: Si - от 4,0% до 12,0%; Y - от 1,0 до 2,0%; Al - остальное. Причем нанесение внешнего жаростойкого слоя чередуют с периодической имплантацией ионами одного или нескольких элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si, с формированием внешнего жаростойкого слоя в виде микрослоев, разделенных имплантированными микро- или нанослоями. 24 з.п. ф-лы, 3 табл.

2441104
патент выдан:
опубликован: 27.01.2012
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ

Изобретение относится к области машиностроения, а именно к методам нанесения защитных покрытий на лопатки энергетических и транспортных турбин, в частности газовых турбин авиадвигателей. Технический результат - повышение жаростойкости покрытия при одновременном повышении выносливости и циклической прочности деталей с покрытием. Способ включает ионно-имплантационную обработку поверхности лопатки, формирование подслоя путем нанесения жаростойкого слоя с его ионной имплантацией и переходного слоя, и нанесение внешнего керамического слоя на основе ZrO2, стабилизированного Y2O3. Ионно-имплантационную обработку поверхности лопатки производят ионами одного или нескольких элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si. В качестве материала для формирования жаростойкого слоя используют сплав состава: Si - от 4,0% до 12, 0%; Y - от 1,0 до 2,0%; Al - остальное. При этом нанесение жаростойкого слоя чередуют с периодической имплантацией ионами одного или нескольких элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si с формированием жаростойкого слоя в виде микрослоев, разделенных имплантированными микро- или нанослоями. В качестве материала для нанесения переходного слоя используют сплав состава Cr - от 18% до 34%; Al - от 3% до 16%; Y - от 0, 2% до 0,7%; Ni - остальное или состава Cr - от 18% до 34%; Al - от 3% до 16%; Y - от 0,2% до 0,7%; Со - от 16% до 30%; Ni - остальное. 19 з.п. ф-лы, 3 табл.

2441103
патент выдан:
опубликован: 27.01.2012
СПОСОБ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО ПОКРЫТИЯ НА ЛОПАТКАХ ТУРБОМАШИН

Изобретение относится к машиностроению и может быть использовано для нанесения жаростойких или теплозащитных покрытий на лопатки энергетических и транспортных турбин, в особенности, газовых турбин авиадвигателей. Лопатки размещают в вакуумной камере, подготавливают поверхность лопатки под нанесение покрытия и осуществляют вакуумно-плазменное нанесение жаростойкого покрытия состава Si 4,0-4,5%, Y 1,6-2,0%, Аl - остальное, или Si 4,0-12,0%, Y 1,6-2,0%, Аl - остальное, или Si 4,0-12,0%, Y 1,6-2,0%, Аl - остальное, при подаче в вакуумную камеру бора или смеси бора с азотом или смеси бора с углеродом, концентрацией, достаточной для образования в формируемом слое соответственно боридов или их комплексных соединений с металлами, обеспечивающих торможение диффузионных процессов в покрытии при эксплуатации лопатки. Нанесение жаростойкого слоя чередуют с периодической имплантацией ионами одного или нескольких элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si, Pd, Ag, N, С, B, W, Ti, Zr, которую каждый раз проводят до образования микро- или нанослоя, обеспечивая разделение всего жаростойкого слоя на микро- или нанослои, образованные как в результате имплантации ионов, так и в результате нанесения материала жаростойкого слоя без импланатции ионов. Обеспечивается повышение жаростойкости покрытия при одновременном повышении выносливости и циклической прочности лопаток. 14 з.п. ф-лы, 3 табл.

2441102
патент выдан:
опубликован: 27.01.2012
СПОСОБ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО ПОКРЫТИЯ НА ЛОПАТКАХ ГАЗОВЫХ ТУРБИН

Изобретение относится к машиностроению и может быть использовано для нанесения жаростойких или теплозащитных покрытий на лопатки энергетических и транспортных турбин, в особенности газовых турбин авиадвигателей. Лопатки размещают в вакуумной камере, проводят подготовку их поверхности и осуществляют вакуумно-плазменное нанесение жаростойкого покрытия состава Cr 18-30%, Al 5-13%, Y 0,2-0,65%, Ni - остальное при подаче в вакуумную камеру установки бора, или смеси бора с азотом, или смеси бора с углеродом концентрацией, достаточной для образования в формируемом слое соответственно боридов или их комплексных соединений с металлами. Нанесение жаростойкого слоя чередуют с периодической имплантацией ионами одного или нескольких элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si, Pd, Ag, N, С, B, W, V, Ti, Zr, которую каждый раз проводят до образования микро- или нанослоя, обеспечивая разделение всего жаростойкого слоя на микро- или нанослои, образованные как в результате имплантации ионов, так и в результате нанесения материала жаростойкого слоя без имплантации ионов. Обеспечивается повышение жаростойкости покрытия при одновременном повышении выносливости и циклической прочности лопаток. 14 з.п. ф-лы, 3 табл.

2441101
патент выдан:
опубликован: 27.01.2012
СПОСОБ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО ПОКРЫТИЯ НА ЛОПАТКАХ ТУРБИН ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ И ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК

Изобретение относится к области машиностроения, а именно к способам нанесения жаростойких покрытий на лопатки энергетических и транспортных турбин, в частности газовых турбин авиадвигателей. Способ включает ионно-имплантационную обработку поверхности лопатки, вакуумно-плазменное нанесение на лопатку жаростойкого слоя и последующую термообработку покрытия. Ионно-имплантационную обработку поверхности лопатки проводят ионами по крайней мере одного из элементов N, Pd, Ag, Nb, Pt, Yb, Y, La, Hf, Cr, Si. Жаростойкий слой наносят из сплава состава: Si - от 4,0% до 12, 0%; Y - от 1,0 до 2,0%; Al - остальное, в среде азота в вакууме не хуже 10-3 мм рт.ст. и при периодической имплантации ионами по крайней мере одного из элементов Nb, Pt, Yb, Y, La, Hf, Cr, Si, Pd, Ag, с получением жаростойких микро- и нанослоев, разделенных имплантированными микро- и нанослоями. Технический результат - повышение жаростойкости покрытия при одновременном повышении выносливости и циклической прочности деталей с покрытием. 12 з.п. ф-лы, 3 табл.

2435872
патент выдан:
опубликован: 10.12.2011
Наверх