Исследование поверхностных или граничных свойств, например смачивающей способности; исследование диффузионных эффектов; анализ материалов путем определения их поверхностных, граничных и диффузионных эффектов; исследование или анализ поверхностных структур в атомном диапазоне – G01N 13/00
G01N 13/02 | .исследование поверхностного натяжения жидкостей |
G01N 13/04 | .исследование осмотических свойств |
G01N 13/10 | .Исследование или анализ поверхностных структур в атомном диапазоне с использованием техники сканирующего зонда посредством измерения вторичной эмиссии 23/22; измерение размеров с использованием техники сканирующего зонда G 01B; конструктивные детали устройств сканирующего зонда вообще G 12B 21/00 |
G01N 13/12 | ..с использованием сканирующей туннельной микроскопии (STM) |
G01N 13/14 | ..с использованием сканирующей оптической микроскопии в ближней зоне (SNOM) |
G01N 13/16 | ..с использованием атомной микроскопии (AFM) |
G01N 13/18 | ..с использованием сканирующей ионопроводящей микроскопии (SICM) |
G01N 13/20 | ..с использованием сканирующей емкостной микроскопии (SCM) |
G01N 13/22 | ..с использованием магнитно-силовой микроскопии (MFM) |
G01N 13/24 | ..с использованием сканирующей электрохимической микроскопии |
Патенты в данной категории
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ ПЕРЕМЕЩЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ ОТ ВЗАИМОДЕЙСТВИЯ ПОВЕРХНОСТНО-АКТИВНОГО ВЕЩЕСТВА СО СЛОЕМ ЖИДКОСТИ НАД ДИСПЕРСНЫМ МАТЕРИАЛОМ
Изобретение относится к области оценки свойств дисперсных материалов и может быть использовано для разработки энергетических нанотехнологий в разных отраслях промышленности и областях знаний, а также для разработки и управления самоорганизующихся систем, открывает возможности для изучения новых принципов построения технических устройств. Для установления дальности перемещения движущихся объектов, направления их перемещения, определения количества и размеров частиц в секторах ограничительной окружности используют объект-препарат из бумаги с нанесенной на нее ограничительной линией шириной 5-6 мм в виде окружности с помеченным центром, направлением расположения видеокамеры и разбитой на сектора тонкими линиями окружности из гидрофобного материала. При этом в помеченном центре ограничительной окружности размещают шаблон, в который помещают дисперсный материал. Затем в ограничительную окружность вносят изучаемую жидкость в количестве, обеспечивающем толщину слоя жидкости над изучаемым материалом. Далее подводят его к центру капилляр на высоте 1-6 мм, содержащий поверхностно-активное вещество, включают видеокамеру на фиксирование изменений поверхности. После завершения процесса перемещения самоорганизующихся объектов на поверхности изучаемого материала видеокамеру отключают, пластину с объектом-препаратом и изучаемым материалом внутри шаблона оставляют высыхать, не сливая воду с поверхности объекта-препарата. Затем с помощью микроскопа определяют в каждом секторе количество частиц и их размеры возле ограничительной окружности, по которым определяют, в каком направлении объекты преимущественно перемещались и примерный состав движущихся объектов. Техническим результатом является обеспечение возможности установления дальности перемещения движущихся объектов, направления их перемещения, определения количества и размеров частиц в секторах ограничительной окружности. 9 ил., 4 пр. |
2529657 выдан: опубликован: 27.09.2014 |
|
СПОСОБ ОПРЕДЕЛЕНИЯ КРАЕВОГО УГЛА СМАЧИВАНИЯ ХВОИ ПРЕДВАРИТЕЛЬНО ОБРАБОТАННОЙ ВОДЯНЫМ ПАРОМ
Изобретение относится к области определения физико-химических свойств поверхностей и может быть использовано для оценки степени гидрофильности хвои, предварительно обработанной водяным паром. Способ определения краевого угла смачивания хвои, предварительно обработанной водяным паром, состоит в нанесении на испытуемую поверхность дозированной капли жидкости, измерении ее размеров и определения краевого угла смачивания по формуле . Техническим результатом является упрощение повышения точности измерения величины краевого угла смачивания хвои, предварительно обработанной водяным паром.1 ил. |
2525602 выдан: опубликован: 20.08.2014 |
|
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОТЫ АДСОРБЦИИ И ТЕПЛОТЫ СМАЧИВАНИЯ ПОВЕРХНОСТИ И ИЗМЕРИТЕЛЬНАЯ ЯЧЕЙКА КАЛОРИМЕТРА
Изобретение относится к области исследования свойств взаимодействия поверхности с флюидами и может быть использовано для определения теплоты адсорбции и смачивания поверхности. Заявлена измерительная ячейка калориметра, состоящая из изолированных друг от друга верхней и нижней частей, сообщающихся между собой посредством подвижного разъемного герметичного соединения. Ячейка снабжена двумя коаксиально расположенными трубками, выполненными с возможностью независимого подключения к внешним устройствам. Внешняя трубка подсоединена к верхней части ячейки, а внутренняя трубка подсоединена к нижней части ячейки через указанное подвижное разъемное герметичное соединение и выполнена подвижной. Технический результат - расширение функциональных возможностей устройства. 1 н. и 7 з.п. ф-лы, 10 ил. |
2524414 выдан: опубликован: 27.07.2014 |
|
СПОСОБ ОПРЕДЕЛЕНИЯ СМАЧИВАЕМОСТИ МЕЛКОДИСПЕРСНЫХ ПОРОШКОВ
Изобретение относится к области исследования характеристик порошковых материалов, в частности их смачиваемости. Целью изобретения является разработка более точного способа определения смачиваемости порошков. Сущность изобретения заключается в том, что в кювете с прозрачными плоско-параллельными стенками создают взвесь равномерно распределенных в воздухе частиц порошка диаметром не более 5 мкм с начальной концентрацией взвеси частиц, выбираемой из условия T0 0.2, и измеряют спектральный коэффициент пропускания взвеси. Затем в кювету подают поток монодисперсных капель диаметром 0.8÷2.5 мм из равномерно распределенных по поперечному сечению кюветы капельниц в течение заданного промежутка времени tk , определяемого из условия Tk>2T0, и повторно измеряют спектральный коэффициент пропускания взвеси. Параметр смачиваемости порошка рассчитывается по формуле
где V - объем кюветы; T0, T k - спектральный коэффициент пропускания до и после осаждения капель; - коэффициент захвата; D - диаметр капли; h - высота кюветы; n - количество капельниц; f - частота падения капель; tk - промежуток времени подачи капель в кювету. Техническим результатом является повышение точности определения характеристик смачиваемости порошковых материалов и обеспечение проведения измерений непосредственно в пылевоздушной смеси. 3 табл., 7 ил. |
2522805 выдан: опубликован: 20.07.2014 |
|
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ДИФФУЗИИ В ПОРОШКОВЫХ МАТЕРИАЛАХ И СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ И ПОКАЗАТЕЛЯ ЦЕЛОСТНОСТИ ПОКРЫТИЯ НА ЧАСТИЦАХ ПОРОШКОВЫХ МАТЕРИАЛОВ
Изобретения относятся к области определения значений параметров, характеризующих физико-химические свойства материалов, например коэффициентов диффузии, по величине электропроводности, и могут найти применение в порошковой металлургии, в изучении процессов самораспространяющегося высокотемпературного синтеза, в материаловедении и физике твердого тела. В способе определения коэффициента диффузии измеряют электропроводность материала в исходном состоянии для определения начального содержания диффузанта в покрытии на его частицах. Затем подвергают материал в насыпном виде диффузионному отжигу, охлаждают и измеряют электропроводность для определения измененного содержания диффузанта в покрытии. Измерение электропроводности материала до и после отжига проводят при различной степени уплотнения, а также до и после отжига определяют толщину покрытия и показатель его целостности, с учетом которых определяют изменение содержания диффузанта в покрытии при постоянном значении его концентрации и определяют коэффициент диффузии по выражению, полученному решением уравнения Фика. Указанную последовательность действий повторяют при различных температурах отжига материала для получения температурной зависимости коэффициента диффузии, по которой в соответствии с законом Аррениуса определяют его постоянные параметры: предэкспоненциальный множитель и энергию активации. При осуществлении способа определения толщины и показателя целостности покрытия образец материала сжимают, измеряют его электропроводность при различной степени уплотнения, определяют электропроводность материала в беспористом состоянии. Дополнительно измеряют удельную поверхность материала и электропроводность материала без покрытия, определяют среднестатистическое координационное число проводящих контактов частиц. Затем рассчитывают относительную площадь проекции неэкранированной покрытием контактной поверхности частиц материала в беспористом состоянии, характеризующую целостность покрытия, и толщину покрытия. Техническим результатом является повышение точности и достоверности определения, упрощение способа, расширение области применения. 2 н.п. ф-лы, 7 ил. |
2522757 выдан: опубликован: 20.07.2014 |
|
СПОСОБ МЕТАЛЛОГРАФИЧЕСКОГО АНАЛИЗА
Изобретение относится к методам металлографического анализа образцов стали и определения трехмерной топографии поверхности и ее структуры при помощи сканирующей зондовой микроскопии (СЗМ). Согласно способу проводится шлифовка, полировка и либо химическое, либо электрохимическое травление образца стали, а затем сканирование поверхности образца с помощью СЗМ. В качестве СЗМ могут использоваться атомно-силовые сканирующие (АСМ), а также сканирующие туннельные (СТМ) и оптические ближнепольные сканирующие (СБОМ), совмещенные с АСМ. По результатам сканирования для металлографического заключения производится идентификация и классификация структурных элементов образца в зависимости от их формы и глубины, которые связаны со скоростью травления этих структурных элементов, определяемой их строением. Технический результат - повышение разрешающей способности, точности и информативности металлографического анализа. 15 з.п. ф-лы, 5 ил. |
2522724 выдан: опубликован: 20.07.2014 |
|
СПОСОБ ТЕСТИРОВАНИЯ СИСТЕМЫ МЕТАЛЛОГРАФИЧЕСКОГО АНАЛИЗА НА ОСНОВЕ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА
Изобретение относится к нанотехнологиям и методам проведения металлографического анализа образцов и определения трехмерной топографии их поверхности и структуры с помощью атомно-силовой микроскопии при разрешающей способности в нанометровом диапазоне. Способ тестирования системы металлографического анализа с помощью сканирующего зондового микроскопа (СЗМ) для действующего оборудования в полевых условиях, использующий макет выбранного для анализа конструкционного элемента оборудования. В указанном макете конструкционного элемента выполняют отверстие, в котором устанавливают макетный образец, изготовленный из металла, аналогичного указанному конструкционному элементу, проводят подготовку поверхности полевыми средствами и анализ с помощью полевого варианта СЗМ. Затем сравнивают результаты с результатами анализа этого же макетного образца, полученными лабораторным путем. Техническим результатом является повышение надежности результатов металлографического анализа на действующем оборудовании. 3 з.п. ф-лы, 5 ил. |
2522721 выдан: опубликован: 20.07.2014 |
|
СПОСОБ ОПРЕДЕЛЕНИЯ ДИСПЕРСНОСТИ ВОДОГАЗОВОЙ СМЕСИ
Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения параметров мелкодисперсной водогазовой смеси перед закачкой в пласт. Техническим результатом является обеспечение проведения измерения дисперсности водогазовой смеси как для прозрачной, так и для непрозрачной дисперсионной среды. Способ включает получение водогазовой смеси под повышенным давлением, отбор пробы водогазовой смеси и перевод ее в измерительную емкость при том же давлении. Перед проведением измерения определяется объем измерительной емкости, а в процессе измерения непрерывно регистрируется изменение давления свободного газа внутри измерительной емкости и объем свободного газа, соответствующее ему приращение объема свободного газа, определятся общее количество газа, содержащегося в отобранной пробе, затем определяется зависимость Р от объема свободного газа в емкости, которая затем пересчитывается в зависимость изменения давления ( Р) от относительной доли текущего значения массы свободного газа miг/mг, где mг - общее количество газа mг, содержащегося в отобранной пробе, miг - текущее значение массы свободного газа, далее определятся радиус газовых пузырьков, содержащихся в доле текущего значения массы свободного газа по формуле:
где - межфазное натяжение, и вычисляется функция распределения радиуса пузырьков. 3 з.п. ф-лы, 1 пр., 1 табл. |
2522486 выдан: опубликован: 20.07.2014 |
|
СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ МЕТАЛЛИЧЕСКИХ РАСПЛАВОВ
Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических расплавов путем измерения плотности и поверхностного натяжения неподвижно лежащей на подложке эллипсовидной капли образца расплава посредством фотоэлектронной объемометрии. Образец расплава в виде капли помещают на подложку в вакуумной камере электропечи горизонтального типа и посредством фотоприемника получают силуэт капли расплава. Перед вакуумной камерой размещают коммутируемый оптический излучатель, который включают в момент прекращения регистрации фотоприемником собственного свечения капли образца расплава во время ее охлаждения. С помощью излучателя освещают каплю расплава и по отраженному оптическому сигналу силуэта капли определяют объем и плотность капли вплоть до температуры ее остывания. Технический результат заключается в увеличении температурного диапазона измерений плотности расплава. 4 з.п. ф-лы, 5 ил. |
2517770 выдан: опубликован: 27.05.2014 |
|
ПРИБОР ДЛЯ СОВМЕСТНОГО ИЗМЕРЕНИЯ ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ И РАБОТЫ ВЫХОДА ЭЛЕКТРОНА ЖИДКОМЕТАЛЛИЧЕСКИХ СИСТЕМ С УЧАСТИЕМ КОМПОНЕНТОВ С ВЫСОКОЙ УПРУГОСТЬЮ НАСЫЩЕННОГО ПАРА МЕТАЛЛОВ И СПЛАВОВ
Изобретение относится к приборам для исследования температурных и концентрационных зависимостей поверхностных свойств металлических расплавов с участием компонентов с высокой упругостью пара и может найти широкое применение в научно-исследовательской практике по физике, физической химии, материаловедении, металлургии легкоплавких металлов, заводских лабораториях и т.д. Комбинированный прибор для совместного определения температурных и концентрационных зависимостей поверхностного натяжения и работы выхода электрона жидкометаллических систем с участием компонентов с высокой упругостью насыщенного пара содержит основной резервуар с чашками-подложками для формирования больших капель исследуемых жидких сплавов. Также прибор содержит электроды для фиксации фотоэмиссионных токов, плоскопараллельные оптические окошки для фотографирования капли и освещения ее поверхности сверху монохроматизированными пучками света. При этом к корпусу резервуара вакуумно-плотно присоединена «гребенка» из необходимого по плану эксперимента количества вакуумированных ампул с блокированными внутри них полусферическими стеклянными перегородками дозированными навесками второго компонента с повышенной упругостью насыщенного пара. Техническим результатом является полное исключение свободного и неконтролируемого массопереноса летучего компонента внутри прибора, точная фиксация составов каждого из сплавов исследуемых двойных и (или) тройных систем с участием летучих компонентов, многократное уменьшение или полное исключение (в зависимости от конкретно исследуемых систем) степени запыления оптических окошек и электродов измерительного отсека прибора при измерениях эмиссионных свойств исследуемых сплавов и работы выхода электрона, расширение температурного диапазона измерений ПН и РВЭ за счет уменьшения времени и интенсивности воздействия паров летучих компонентов исследуемых сплавов на внутренние стенки прибора, увеличение долговечности и эксплуатационного периода прибора без потери основных характеристик, а также возможность повторного использования прибора для изучения других систем за счет многократного уменьшения общего времени воздействия паров агрессивных летучих компонентов исследуемых сплавов на материал, из которого изготовлен прибор. 2 ил. |
2511277 выдан: опубликован: 10.04.2014 |
|
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ГРАНИЧНОГО СЛОЯ ВОДЫ
Изобретение относится к области малых энергий в химии и может быть использовано при разработке нанотехнологий в разных отраслях промышленности: химической, легкой, кожевенной и меховой, пищевой, медицинской, строительной индустрии, а также в разных областях знаний. Для оценки толщины граничного слоя воды на поверхностях с разными свойствами путем определения дальности распространения межмолекулярных сил поверхности в воду с использованием способности поверхностно-активных веществ перемещать воду, находясь в газовой фазе в виде нанокапель, в разработке на этой основе новых методов и способов применения нанотехнологий для химических и энергетических целей, получения новых знаний толщину слоя воды, находящейся во взаимодействии с веществом поверхности, на которой вода находится, определяют по разности критической толщины слоя воды, при которой еще происходит прорыв этого слоя поверхностно-активным веществом из газовой фазы, и толщиной структурированного поверхностного слоя воды, равной 0,15 мм. Информацию о критической толщине слоя воды на изучаемой поверхности получают от взаимодействия поверхностно-активного вещества с поверхностью воды, фиксируя видео или кинокамерой процесс перемещения воды от подвода капилляра с поверхностно-активным веществом до окончания перемещения воды. Затем на покадровой развертке определяют время, необходимое для прорыва слоя воды, а толщину слоя воды увеличивают и определяют, при какой толщине воды прорыва слоя не происходит. За критическую толщину слоя воды принимают толщину, при которой еще происходит прорыв всей толщины воды. Техническим результатом является разработка способа определения толщины граничного слоя воды, в котором распространяется силовое поле молекул поверхности тела, на котором жидкость находится. 6 ил. |
2510495 выдан: опубликован: 27.03.2014 |
|
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА ЖИДКОСТИ, ПЕРЕМЕЩАЕМОЙ ПОВЕРХНОСТНО-АКТИВНЫМ ВЕЩЕСТВОМ В ГАЗОВОЙ ФАЗЕ
Изобретение относится к области оценки поверхностных свойств материалов и может быть использовано для разработки энергетических нанотехнологий в различных отраслях промышленности: химической, кожевенной и меховой, легкой, пищевой, медицинской, строительной индустрии и т.д. Для установления количества жидкости, перемещаемой поверхностно-активным веществом в газовой фазе, скорости ее перемещения, для получения новых характеристик при оценке свойств различных веществ, в том числе порошкообразных наночастиц и наноматериалов, для перемещения жидкости используют поверхностно-активные вещества, способные переходить в газовую фазу при комнатных температурах, при этом поверхностно-активным веществом воздействуют на слой жидкости, находящейся на поверхности изучаемого материала из газовой фазы. Для этого изучаемый материал в виде пластины или в виде порошка помещают в центр ограничительной окружности, нанесенной на легко сменяемую поверхность или в кювету с известной внутренней площадью, и накрывают изучаемый материал слоем жидкости известной толщины. Затем заполняют капилляр обмакиванием в поверхностно-активное вещество, например изопропиловый спирт, выдерживают его в течение 5-10 мин в газовой среде, в которой проводят опыт. Для испарения с внешней поверхности капилляра поверхностно-активного вещества включают видео или кинокамеру и устанавливают заполненный капилляр на высоте 1-6 мм над центром поверхности изучаемого материала. Фиксирование происходящих изменений продолжают до тех пор, пока не закончится процесс перемещения жидкости. Отснятый видеоматериал помещают в компьютер и с помощью стандартных программ определяют время, необходимое для прорыва слоя жидкости по времени между отснятыми кадрами, скорость перемещения слоя жидкости по пройденному расстоянию краем перемещаемого слоя жидкости и времени, затраченному на перемещение, которое определяют по разности между отснятыми кадрами и скоростью съемки, а также объем перемещаемой жидкости во времени по изменению радиуса перемещаемого слоя и начальной толщиной слоя жидкости. Техническим результатом является установление количества жидкости, перемещаемой поверхностно-активным веществом в газовой фазе, и скорости ее перемещения, в получении новых характеристик для оценки свойств различных веществ, в том числе порошкообразных наночастиц и наноматериалов. 13 ил., 1 табл. |
2510011 выдан: опубликован: 20.03.2014 |
|
СПОСОБ ОЦЕНКИ СОСТОЯНИЯ ЛЕГОЧНОГО СУРФАКТАНТА
Изобретение относится к медицине, а именно к пульмонологии, и может быть использовано для оценки состояния легочного сурфактанта. Для этого собирают компоненты легочного сурфактанта путем барботации выдыхаемого воздуха через слой изотонического физиологического раствора, расположенного в стеклянной бюретке и лотке барьерной системы Ленгмюра. Затем в бюретке методом отрыва кольца измеряют статическое поверхностное натяжение полученного барботата выдыхаемого воздуха. Далее, в лотке барьерной системы Ленгмюра методом Вильгельми измеряют поверхностное давление с уменьшением площади между барьерами на 90%. При снижении статического поверхностного натяжения до 37±8 дин/см после 5 минут барботации и/или при повышении поверхностного давления с 4,5±1,0 дин/см после первого выдоха до 17,0±3,0 дин/см после пятого выдоха диагностируют нормальную антиателектатическую функцию легочного сурфактанта. Способ обеспечивает повышение эффективности сбора аэрозоля легочного сурфактанта из выдыхаемого воздуха при снижении времени проведения исследования. 2 ил., 3 пр. |
2500347 выдан: опубликован: 10.12.2013 |
|
СПОСОБ ОПРЕДЕЛЕНИЯ СМАЧИВАЕМОСТИ
Изобретение относится к области исследования смачиваемости поверхностей применительно к различным отраслям промышленности. Для определения смачиваемости поверхности исследуемого материала по меньшей мере один образец исследуемого материала помещают в по меньшей мере одну герметичную ячейку калориметра. Обеспечивают контакт по меньшей мере одного образца с первой смачивающей жидкостью и со второй смачивающей жидкостью при одинаковых давлении и температуре. Измеряют энергии смачивания по меньшей мере одного образца первой и второй смачивающими жидкостями, после чего из заданного соотношения рассчитывают параметр смачиваемости, характеризующий систему поверхность-жидкость-жидкость. Достигается повышение эффективности и надежности определения. 15 з.п. ф-лы. |
2497098 выдан: опубликован: 27.10.2013 |
|
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ДИФФУЗИИ РАСТВОРИТЕЛЕЙ В МАССИВНЫХ ИЗДЕЛИЯХ ИЗ КАПИЛЛЯРНО-ПОРИСТЫХ МАТЕРИАЛОВ
Изобретение относится к измерительной технике и может быть использовано в строительных материалах и изделиях, а также в пищевой, химической и других отраслях промышленности. Способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов заключается в создании в исследуемом образце равномерного начального содержания распределенных в твердой фазе веществ, приведении плоской поверхности образца в контакт со средой с отличным от образца содержанием распределенных в твердой фазе веществ, измерении изменения во времени сигнала гальванического преобразователя, определении времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчете коэффициента диффузии, при этом согласно изобретению производят импульсное точечное соприкосновение плоской поверхности исследуемого изделия с источником дозы растворителя, после чего гидроизолируют эту поверхность, располагают электроды гальванического преобразователя на этой поверхности по концентрической окружности относительно точки воздействия дозой растворителя, измеряют изменение во времени ЭДС гальванического преобразователя, а рассчитывают искомый коэффициент по формуле, связывающей время достижения максимума на кривой изменения ЭДС гальванического преобразователя и расстояние между электродами и точкой воздействия дозой растворителя на контролируемое изделие. Изобретение обеспечивает повышение оперативности измерения и возможность неразрушающего контроля коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов. 1 табл., 1 ил. |
2492457 выдан: опубликован: 10.09.2013 |
|
СПОСОБ ПОДГОТОВКИ ПОВЕРХНОСТИ МЕТАЛЛИЧЕСКИХ ДЕТАЛЕЙ К ОПЕРАТИВНОМУ ВЫЯВЛЕНИЮ ПРИЖОГОВ ИЗМЕРЕНИЕМ РАБОТЫ ВЫХОДА ЭЛЕКТРОНА
Предлагаемое изобретение относится к области неразрушающего контроля металлических деталей, обработанных шлифованием и полированием в ходе их производства или ремонта. Способ подготовки поверхности металлических деталей к оперативному выявлению прижогов измерением работы выхода электрона заключается в том, что перед измерением работы выхода электрона методом контактной разности потенциалов необходимо тщательно удалить загрязнения обезжириванием детали промывкой в растворителе «Нефрас 50/170» ГОСТ 8505-80 с добавлением 1-2 мас.% антикоррозионной присадки «АКОР-1» ГОСТ 15171-78. Затем промывают деталь холодной проточной водой, протирают деталь чистой салфеткой, просушивают деталь в течение 30 с струей сухого сжатого воздуха давлением 10-20 кПа из баллона или созданного компрессором. Далее протирают контролируемый участок детали тампоном, смоченным в петролейном эфире 70-100 ТУ 6-02-1244-84, просушивают поверхность детали на воздухе комнатной температуры в течение не менее 10 мин. Затем контролируют степень очистки поверхности детали измерением контактной разности потенциалов прибором, имеющим измерительный электрод из технически чистого никеля, для титановых сплавов контактная разность потенциалов при этом должна быть не менее 240 мВ. Техническим результатом изобретения является повышение надежности и достоверности определения работы выхода электрона методом контактной разности потенциалов при выявлении прижогов, возникающих при производстве, эксплуатации или ремонте деталей машин. 1 табл. |
2488093 выдан: опубликован: 20.07.2013 |
|
СПОСОБ ДЛЯ РАСЧЕТА ОТНОШЕНИЯ ОТНОСИТЕЛЬНЫХ ПРОНИЦАЕМОСТЕЙ ТЕКУЧИХ СРЕД ФОРМАЦИИ И СМАЧИВАЕМОСТИ СКВАЖИННОЙ ФОРМАЦИИ И ИНСТРУМЕНТ ДЛЯ ИСПЫТАНИЯ ФОРМАЦИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТОГО СПОСОБА
Изобретение относится к определению коэффициента относительной проницаемости и смачиваемости формации. Техническим результатом является испытание забойной формации для определения относительной проницаемости в забойных условиях. Способ и инструмент, который воплощает способ, включающий в себя измерение вязкостей и скоростей течения текучих сред формации и получение отношения относительных проницаемостей текучих сред формации и смачиваемости формации с использованием этих вязкостей и скоростей течений текучих сред формации. 2 н. и 16 з.п. ф-лы, 5 ил. |
2479716 выдан: опубликован: 20.04.2013 |
|
СПОСОБ РЕГИСТРАЦИИ ИЗМЕНЕНИЯ ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ ТВЕРДЫХ ЭЛЕКТРОДОВ, КОНТАКТИРУЮЩИХ С ВЫСОКОТЕМПЕРАТУРНЫМИ ЭЛЕКТРОЛИТАМИ
Изобретение относится к электрохимии и может быть использовано для исследований межфазных границ между электропроводящими твердыми электродами, находящимися в контакте с расплавленными, преимущественно высокотемпературными электролитами. Сущность: для регистрации изменения поверхностного натяжения твердых электродов, контактирующих с высокотемпературными электролитами, используют электрохимическую ячейку из исследуемого твердого электрода, посредством звуковода, соединенного с пьезоэлементом, а также электрод сравнения, чехол с термопарой, жаропрочную охлаждаемую пробирку. Собранную ячейку подключают к системе регистрации изменения поверхностного натяжения твердых электродов. При этом соединенный с пьезоэлементом исследуемый твердый электрод, электрод сравнения, чехол с термопарой и контейнер электролита собирают в отдельный модуль, который помещают в жаропрочную пробирку. Технический результат: упрощение сборки электрохимической ячейки, повышение надежности ее конструкции, снижение материалоемкости и удешевление эксперимента, возможность многократного использования пробирки и модуля, уменьшение источников загрязнений исследуемой системы. 6 з.п. ф-лы, 7 ил. |
2471169 выдан: опубликован: 27.12.2012 |
|
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ И ИДЕНТИФИКАЦИИ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ В ВОДНЫХ РАСТВОРАХ
Изобретение относится к области физических измерений. Определение концентрации и идентификация поверхностно-активных веществ в водных растворах заключается в том, что в исследуемом водном растворе определяют зависимость мгновенных значений поверхностного натяжения при увеличении площади поверхности раздела фаз «раствор-воздух» и зависимость мгновенных значений поверхностного натяжения от времени при адсорбции ПАВ в объем раствора. Затем идентифицируют поверхностно-активные вещества, используя базу данных эталонных зависимостей, полученных аналогично с растворами, содержащими известные ПАВ в установленных концентрациях. При этом дополнительно измеряют разность мгновенных значений поверхностного натяжения в исследуемом водном растворе при уменьшении площади поверхности раздела фаз «раствор-воздух», по которой определяют концентрацию с использованием калибровочных кривых, предварительно построенных для определения ПАВ, наиболее предполагаемых к обнаружению в исследуемых водных растворах. Далее осуществляют выбор калибровочной кривой по результатам идентификации, экспериментальную и эталонную зависимости мгновенных значений поверхностного натяжения в водном растворе от времени при адсорбции ПАВ в объем раствора снимают при минимальной площади поверхности раздела фаз «раствор-воздух». Техническим результатом изобретения является повышение вероятности правильной идентификации и точности определения концентрации поверхностно-активных веществ в водных растворах. 3 ил. |
2469291 выдан: опубликован: 10.12.2012 |
|
СПОСОБ ОПРЕДЕЛЕНИЯ СМАЧИВАЕМОСТИ ПОРИСТЫХ МАТЕРИАЛОВ
Способ определения смачиваемости пористых материалов предусматривает размещение образца пористого материала в ячейке калориметра и обеспечение контакта образца со смачивающей жидкостью. Осуществляют постоянную регистрацию теплового потока в ячейку и на основании результатов измерения с учетом теплового эффекта от сжимания жидкости рассчитывают краевой угол смачивания пор, заполнившихся жидкостью. Затем осуществляют повышение давления в ячейке с образцом до полного заполнения жидкостью всех пор образца и последующее снижение давления до первоначального давления с постоянной регистрацией теплового потока в ячейку. Это позволяет на основании результатов измерений с учетом теплового эффекта от сжимания жидкости рассчитать краевой угол смачивания заполненных жидкостью пор, а также освободившихся от жидкости пор. Техническим результатом изобретения является обеспечение возможности изучения смачиваемости пористых образцов путем определения краевого угла смачиваемости для пор различного диаметра с высокой точностью. 12 з.п. ф-лы, 2 ил. |
2468353 выдан: опубликован: 27.11.2012 |
|
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ И УГЛА СМАЧИВАНИЯ
Изобретение относится к области поверхностных явлений в технологии вязкотекучих жидкостей и может использоваться в измерительной технике для прецизионного определения коэффициента поверхностного натяжения различных жидкостей, в том числе высокотемпературных расплавов, и измерения угла смачивания. Капля жидкости наносится на твердую горизонтальную поверхность. По изображению капли измеряются высота ее вершины и радиус пятна контакта капли с подложкой. На основе решения уравнений равновесия определяются коэффициент поверхностного натяжения и угол смачивания с заданной точностью. Ограничений по размеру капель и значению краевых углов нет. Техническим результатом способа является упрощение процедуры измерений и повышение точности результата. 1 табл., 4 ил. |
2460987 выдан: опубликован: 10.09.2012 |
|
СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ ВЫСОКОТЕМПЕРАТУРНЫХ МЕТАЛЛИЧЕСКИХ РАСПЛАВОВ (ВАРИАНТЫ)
Группа изобретений относится к технической физике, а именно к анализу материалов, в частности, к определению плотности металлических расплавов методом геометрии «большой капли», т.е. путем измерения параметров силуэта лежащей на подложке эллипсовидной капли образца расплава посредством фотоэлектронной объемометрии. Изобретение может быть использовано в лабораториях и на предприятиях металлургической промышленности. По 1 варианту перед загрузкой образца на подложку помещают отражатель, перед объективом фотоприемника помещают излучатель ортогональных оптических линий, между излучателем и вакуумной камерой помещают полупрозрачную пластину с фотосенсорами, соединенными с блоком сигнализации и управления узлом настройки. После этого осуществляют регулировку горизонтальности подложки, выключают излучатель, убирают отражатель, излучатель, полупрозрачную пластину и продолжают операции. Кроме того, используют лазерный нивелир, а в качестве полупрозрачной пластины - мишень от него, в том числе с ортогональными щелями и фотосенсорами. Кроме того, используют шаговые двигатели с зубчатой передачей и отражатель в виде призмы. По 2 варианту на подложку загружают образец, включают измерительную установку, с помощью фотоприемника и компьютера получают изображение силуэта эллипсовидной капли на дисплее. Затем осуществляют регулировку подложки до тех пор, пока линия подложки на дисплее не будет выставлена горизонтально или вертикальная координата одного из краев изображения подложки не будет равна вертикальной координате другого, после чего продолжают последующие операции. Техническим результатом изобретения является увеличение объективности, достоверности и точности определения плотности высокотемпературных металлических расплавов методом геометрии «большой капли». 2 н. и 5 з.п. ф-лы, 6 ил. |
2459194 выдан: опубликован: 20.08.2012 |
|
СПОСОБ ОПРЕДЕЛЕНИЯ СМАЧИВАЕМОСТИ ПОРОШКОВЫХ МАТЕРИАЛОВ
Изобретение относится к области исследования характеристик порошковых материалов, в частности их смачиваемости. Способ определения смачиваемости порошковых материалов заключается в нахождении краевого угла капли, помещенной на брикет спрессованного порошка. Причем порошок прессуют под давлением не менее 400 МПа в матрице цилиндрической формы высотой не более 0.1Dk и диаметром не более 2Dk, где Dk - диаметр капли. На полученный брикет в матрице помещают со скоростью не более 1 см/с каплю исследуемой жидкости, а краевой угол измеряют методом видеосъемки через промежуток времени 0.2-6 с после помещения капли на брикет. При этом используют порошок со средним размером частиц не более 100 мкм. Техническим результатом изобретения является повышение точности определения характеристик смачиваемости порошковых материалов и снижение трудоемкости процесса измерения. 4 ил., 2 табл. |
2457464 выдан: опубликован: 27.07.2012 |
|
СПОСОБ УПОРЯДОЧЕНИЯ СТРУКТУРЫ НЕПОДВИЖНОГО ГРАНИЧНОГО СЛОЯ ВЯЗКОЙ НЕСЖИМАЕМОЙ ЖИДКОСТИ
Изобретение относится к области молекулярной технологии (нанотехнология). Цель изобретения состоит в разработке способа упорядочения структуры граничного слоя вязкой несжимаемой жидкости. В предлагаемом способе использован оригинальный капиллярный прибор специальной конструкции с горизонтально расположенной трубкой. Диаметр трубки около 200 мкм и длина трубки 32 мм (модифицированный сталагмометр). Объемный расход вязкой несжимаемой жидкости определятся с помощью мерного сосуда постоянной и малой вместимости - объема капли, который позволяет измерять уменьшение расхода в долях микролитра. Это дает возможность регистрировать увеличение толщины неподвижного граничного слоя на микроскопическую величину. Рассмотрение отношения импульса силы динамического давления потока к длине капилляра приводит к вычислению величины объемного расхода вязкой несжимаемой жидкости. Последняя позволяет определить величину силы динамического давления потока, приводящего к упорядочению структуры граничного слоя в капилляре. Технический результат, получаемый при реализации изобретения, заключается в возможности применения такого способа при разработке методов технологии наносборки - при образовании структурных фрагментов из отдельных молекул при помощи сил адгезии вязкой несжимаемой жидкости и твердого тела. 1 з.п. ф-лы, 1 ил. |
2457463 выдан: опубликован: 27.07.2012 |
|
СПОСОБ ОЦЕНКИ СТЕПЕНИ ТРЕЩИНОВАТОСТИ КАРБОНАТНЫХ ПОРОД ЧЕРЕЗ ПАРАМЕТР ДИФФУЗИОННО-АДСОРБЦИОННОЙ АКТИВНОСТИ
Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке нефтяных и газовых залежей, а также при интерпретации ГИС (геофизических исследований скважин). Техническим результатом является оптимизация комплекса петрофизических исследований керна и обеспечение на его основе количественной оценки степени трещиноватости карбонатных пород. Способ включает этапы насыщения керна аналогом пластовой воды, измерения естественного потенциала диффузионного происхождения Е , измерения через заданные промежутки времени электрохимического потенциала Е а, определения по математическому выражению диффузионно-адсорбционной активности А а и абсолютной погрешности измерения А а, и применение полученных значений А а для количественной оценки гидрофобности порового пространства. При этом наряду с оценкой гидрофобности порового пространства по величине значения А а А а оценивают степень трещиноватости в структуре пустотного пространства керна, интенсивность которой возрастает с увеличением значения А а. 2 ил. |
2455483 выдан: опубликован: 10.07.2012 |
|
СПОСОБ КОНТРОЛЯ КАЧЕСТВА МАГНИТНОЙ ОБРАБОТКИ ЖИДКОСТИ
Изобретение относится к контролю качества магнитной обработки жидкостей. Способ контроля качества магнитной обработки жидкости включает нанесение на твердую поверхность с помощью мерной пипетки капель исследуемой жидкости, подвергнутой при заданных режимах магнитной обработке: напряженности магнитного поля, скорости потока и числа изменений направленности потока жидкости относительно магнитных силовых линий. Причем капли исследуемой жидкости наносят сверху на поверхность вдоль образующей цилиндрического барабана, вращающегося вокруг продольной оси и снабженного угломерным диском, который предназначен для определения угла скатывания капель жидкости. Затем по наибольшему значению этого угла определяют оптимальный режим магнитной обработки жидкости. При этом материал поверхности цилиндрического барабана задается в соответствии с его гидрофобностью и типом исследуемой жидкости. Техническим результатом изобретения является повышение точности контроля качества магнитной обработки жидкости за счет повышения точности определения угла скатывания при сохранении простоты измерения. 1 ил. |
2453825 выдан: опубликован: 20.06.2012 |
|
СПОСОБ КОНТРОЛЯ КОНЦЕНТРАЦИИ МЫЛА В МЫЛЬНО-СОДОВЫХ РАСТВОРАХ ДЛЯ МАШИННОЙ ПРОМЫВКИ ШЕРСТИ
Изобретение относится к первичной обработке шерсти, в частности к способам контроля концентрации мыла в мыльно-содовых растворах для машинной промывки шерсти, и может быть использовано при массовой промывке лабораторных проб при определении выхода шерсти. Способ контроля концентрации мыла в мыльно-содовых растворах для машинной промывки шерсти включает измерение высоты столба пены, образующегося при свободном падении нормированного объема испытуемого раствора, вытекающего через калиброванный насадок с определенной высоты, на поверхность того же раствора. При этом одновременно в этом же растворе, взятом из ванны моечного агрегата, при рабочей температуре определяют путем титрования по фенолфталеину концентрацию соды кальцинированной в г/дм3 и с учетом полученных величин концентрации соды и высоты столба пены по формулам для фиксированных концентраций соды: М05=0,032Н-0,55; M15=0,031H+0,34 и M25=0,033H-0,21, где Н - высота столба пены в миллиметрах, а индексы 05, 15, 25 - фиксированные концентрации соды, соответственно, 0,5; 1,5 и 2,5 г/дм3, или по графикам, построенным по формулам, определяют концентрацию мыла в г/дм3. Техническим результатом изобретения является повышение эффективности промывки шерсти, снижение расхода моющих средств, а также повышение оперативности технологического контроля процесса машинной промывки шерсти. 2 ил., 1 табл. |
2449257 выдан: опубликован: 27.04.2012 |
|
СПОСОБ ОПРЕДЕЛЕНИЯ СМАЧИВАЕМОСТИ ВОЛОКНИСТЫХ МАТЕРИАЛОВ ПОЛИМЕРНЫМИ СВЯЗУЮЩИМИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Изобретение относится к области исследования поверхностных и граничных свойств материалов, в частности к способам и устройствам, позволяющим определять смачиваемость волокнистых наполнителей полимерными связующими, и может быть использовано при создании и производстве высокопрочных композиционных материалов. Устройство для определения смачиваемости волокнистых материалов полимерными связующими включает держатель образца и резервуар с полимерным связующим. При этом держатель образца выполнен в виде одной или нескольких плоских рамок. Причем каждая из плоских рамок содержит не менее 10 образцов нити или жгута волокнистого материала, намотанных с шагом 5 15 мм на плоскую рамку. При этом одна или несколько плоских рамок вместе с резервуаром с полимерным связующим установлены в термошкафу. Техническим результатом изобретения является повышение достоверности полученных результатов за счет возможности одновременного исследования большого количества однородных образцов. 2 н. и 1 з.п. ф-лы, 2 пр., 2 табл., 3 ил. |
2447422 выдан: опубликован: 10.04.2012 |
|
УСТРОЙСТВА И СПОСОБЫ ДЛЯ МОДЕЛИРОВАНИЯ ГЛАЗНОЙ ОКРУЖАЮЩЕЙ СРЕДЫ
Изобретение относится к области офтальмологии и направлено на обеспечение возможности исследования рабочих характеристик офтальмологических линз в условиях окружающей глаз среды, что обеспечивается за счет того, что устройство для исследования офтальмологической линзы содержит вставную форму и охватывающую форму, где указанная вставная форма содержит выпуклую поверхность для исследования, наружную вставную поверхность, вставной опорный ориентирующий выступ, проходящий от периметра выпуклой поверхности для исследования, и отверстие, проходящее от наружной вставной поверхности к выпуклой поверхности для исследования. При этом охватывающая форма содержит наружную охватывающую поверхность, вогнутую поверхность для исследования, охватывающий опорный ориентирующий уступ, проходящий от периметра вогнутой поверхности для исследования, и отверстие, проходящее от вогнутой поверхности для исследования к наружной охватывающей поверхности. Причем, когда вставная форма и охватывающая форма собраны вместе, вставной опорный ориентирующий выступ опирается на охватывающий опорный ориентирующий уступ и создает область исследования между вставной выпуклой поверхностью для исследования и охватывающей вогнутой поверхностью для исследования. 4 н. и 21 з.п. ф-лы, 7 ил. |
2443999 выдан: опубликован: 27.02.2012 |
|
СПОСОБ ОПРЕДЕЛЕНИЯ НАЛИЧИЯ БАКТЕРИЙ Escherichia coli ПО ДЕТЕКТИРОВАНИЮ ИХ ФРАГМЕНТОВ С ПОМОЩЬЮ АТОМНО-СИЛОВОЙ МИКРОСКОПИИ
Изобретение относится к области биотехнологии, а именно к способу определения наличия бактерий Escherichia coli. Способ включает специфическую иммобилизацию фрагментов указанных бактерий из раствора на аффинную поверхность, состоящую из слоя белка G с нанесенным на него слоем антител, специфичных к выявляемым бактериальным клеткам. Осуществляют двухэтапную промывку образца от неспецифически связавшегося материала, включающую в себя промывку в буфере со значением рН 8,5-9,5 и последующую промывку деионизованной водой. Используют атомно-силовую микроскопию как инструмент визуализации связавшихся бактериальных фрагментов с возможностью прямого подсчета объема связавшегося аналита на единицу поверхности. Предложенное изобретение позволяет определять наличие сверхмалых концентраций клеток в анализируемом растворе. 1 ил. |
2437937 выдан: опубликован: 27.12.2011 |