Измерение линейной или угловой скорости, ускорения, замедления или силы ударов (толчков); индикация наличия, отсутствия или направления движения – G01P

МПКРаздел GG01G01P
Раздел G ФИЗИКА
G01 Измерение
G01P Измерение линейной или угловой скорости, ускорения, замедления или силы ударов (толчков); индикация наличия, отсутствия или направления движения

G01P 1/00 Элементы конструкции измерительных приборов
G01P 11/00 Измерение среднего значения скорости
путем определения времени, затраченного на прохождение заданного расстояния  3/645/18
G01P 13/00 Индикация наличия, отсутствия или направления движения
счет движущихся объектов  G 06M 7/00; электрические выключатели  H 01H
G01P 15/00 Измерение ускорения и замедления; измерение импульсов ускорения
G01P 21/00 Испытания и калибровка приборов и устройств, отнесенных к другим группам данного подкласса
G01P 3/00 Измерение линейной или угловой скорости; измерение разности различных линейных и угловых скоростей
G01P 5/00 Измерение скорости текучих сред, например воздушных потоков; измерение скорости твердых тел, например судов, самолетов и т.п., относительно текучей среды
применение измерителей скорости для измерения объема текучих сред  G 01F
G01P 7/00 Измерение скорости путем интегрирования ускорения
измерение расстояния путем двойного интегрирования ускорения  G 01C 21/16
G01P 9/00 Измерение скорости с помощью гироскопического эффекта, например в газах, электронных пучках
гироскопы и поворотно-чувствительные устройства как таковые  G 01C 19/00

Патенты в данной категории

ТЕРМОАНЕМОМЕТР И СПОСОБ НАГРЕВА ЕГО ТЕРМОРЕЗИСТОРНОЙ СТРУКТУРЫ

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости и температуры в потоках газов и жидкостей. Предлагается устройство термоанемометра, в котором на одной оптической оси последовательно друг за другом расположены источник света, ТЧЭ в виде терморезистивной структуры с внешними электрическими выводами и пластина, выполняющая роль отражающей поверхности. Пластина установлена за терморезистивной структурой. Центр пластины совпадает с оптической осью, а высота пластины больше размера поперечного сечения термочувствительного элемента. Также заявлен способ нагрева терморезистивной структуры термоанемометра, в котором на обратной, теневой, стороне терморезистивной структуры также формируется источник теплового потока. Технический результат - повышение точности получаемых данных. 2 н. п. ф-лы, 2 ил.

2528572
выдан:
опубликован: 20.09.2014
ТЕРМОИНВАРИАНТНЫЙ ИЗМЕРИТЕЛЬ ЛИНЕЙНОГО УСКОРЕНИЯ

Изобретение относится к измерительной технике, а именно к средствам измерения линейных ускорений в системах управления движущимися объектами, например к средствам измерения линейного ускорения в бесплатформенных инерциальных навигационных системах управления космическими объектами. Целью изобретения является повышение точности измерений, уменьшение времени готовности и энергопотребления за счет снижение влияния температуры на параметры измерителя линейного ускорения. Измеритель содержит кварцевый компенсационный маятниковый акселерометр, преобразователь напряжения в частоту, термосистему, содержащую первую мостовую схему резисторов, в одно из плеч которой включен первый термодатчик, установленный между катушкой и корпусом акселерометра, усилитель мощности, катушку обогрева, охватывающую корпус акселерометра, преобразователь содержит нагрузочный резистор Roc, который подключен к выходу усилителя обратной связи, генератор синхрочастоты, интегратор, резистор заряда Rзар, две симметричные цепи преобразования положительной и отрицательной информации, эталонный источник напряжения, компаратор, резистор разряда Rразр, переключающее устройство, содержащее электронный ключ, триггер, счетчик тактовых импульсов, и формирователь импульсной выходной информации. Отличительной частью изобретения является система аппаратной компенсации температурных погрешностей, содержащая вторую мостовую схему резисторов, второй термодатчик, установленный внутри корпуса акселерометра и включенный в одно из плеч второй мостовой схемы, измерительный усилитель, инвертор и четыре резистора R1-4. Термоинвариантность основных параметров измерителя линейных ускорений - масштабного коэффициента и смещения нуля, построенного на кварцевом маятниковом акселерометре и имеющего поэтому существенную нелинейную зависимость указанных параметров от температуры, обеспечивается за счет того, что с помощью известной термосистемы внутри акселерометра обеспечивается диапазон температур, соответствующий линейному участку графика зависимости от температуры масштабного коэффициента и смещения нуля, а с помощью введенной системы аппаратной компенсации в определенные точки схемы преобразователя напряжение-частота подаются компенсирующие напряжения, функционально зависящие от текущего значения температуры внутри акселерометра и от температурных коэффициентов масштабного коэффициента и смещения нуля акселерометра. 6 ил.

2528119
выдан:
опубликован: 10.09.2014
СТРУННЫЙ АКСЕЛЕРОМЕТР

Предлагаемое изобретение относится к области приборостроения и предназначено для автономного измерения ускорения летательных аппаратов. Струнный акселерометр содержит на своем основании чувствительные элементы, включающие струну, закрепленную одним концом на корпусе, другим на грузе, размещенном на упругом пластинчатом подвесе, и магнитоэлектрические приводы для поддержания автоколебаний струн. Для достижения технического результата чувствительный элемент выполнен в виде замкнутого прямоугольного камертона с внутренним креплением, расположенным на одной из сторон корпуса на геометрической оси, проходящей перпендикулярно струне через ее середину, причем каждая пара параллельных сторон чувствительного элемента состоит из нескольких жестко скрепленных участков из материалов с разными температурными коэффициентами линейного расширения. При этом суммы произведений их длин на температурный коэффициент линейного расширения равны соответственно для сторон вдоль и поперек струны, а температурный коэффициент модуля упругости подвеса равен разности температурных коэффициентов линейного расширения подвеса и струны. Изобретение позволяет повысить точность измерения ускорения за счет увеличения добротности струнного резонатора и снижения температурной погрешности и чувствительности к внешним и внутренним механическим воздействиям на напряжения в струне, а также упростить конструкцию и требования к выбору физико-механических свойств к материалам и форме деталей силовой цепи натяжения струны. 4 ил.

2528103
выдан:
опубликован: 10.09.2014
АКСЕЛЕРОМЕТР

Акселерометр предназначен для применения в качестве чувствительного элемента в системах стабилизации и навигации. Изобретение может найти применение в приборах измерения механических величин компенсационного типа. Акселерометр содержит чувствительный элемент, отклонение которого фиксируется датчиком угла, выходы которого соединены с входами сумматора через пороговый элемент и интегрирующий усилитель, и датчик момента, включенный в отрицательную обратную связь. Выход сумматора является аналоговым выходом устройства. Для повышения точности и расширения полосы пропускания в акселерометр введены две отрицательные обратные связи: одна - с выхода датчика угла на один из входов датчика момента через дифференцирующий фильтр, другая - отрицательная интегрирующая обратная связь, реализована с выхода сумматора на другой вход датчика момента последовательно по информационным входам через компаратор, преобразователь уровня, пару ждущих синхронных генераторов, реверсивный двоичный счетчик, схему сравнения, триггер, электронный ключ. Дополнительные входы компаратора, реверсивного двоичного счетчика, ждущих синхронных генераторов соединены с генератором вспомогательной частоты. Кроме того, вход электронного ключа соединен с выходом генератора тока. Вход схемы сравнения соединен с выходом генератора вспомогательной частоты через суммирующий двоичный счетчик. Выход реверсивного двоичного счетчика является цифровым выходом устройства. Отрицательная обратная связь, реализованная с выхода датчика угла на вход датчика момента, через дифференцирующий фильтр, осуществляет стабилизацию параметров акселерометра. Введение в акселерометр интегрирующей отрицательной обратной связи позволяет создать устройство с астатизмом по отклонению, работающее в автоколебательном режиме, с расширенной полосой пропускания и значительным быстродействием. 2 ил.

2527660
выдан:
опубликован: 10.09.2014
ТРЕХКОМПОНЕНТНЫЙ СТРУЙНЫЙ ДАТЧИК УГЛОВОЙ СКОРОСТИ

Изобретение относится к области измерительной техники и может быть использовано для определения величины угловой скорости подвижных объектов. Датчик содержит герметичный корпус 3, в котором расположены нагнетатель 1, первая рабочая камера 4, на входе которой размещен блок 2 формирования ламинарной струи, связанный с выходом нагнетателя 1, а на выходе анемочувствительный блок, и вторая рабочая камера 16, расположенная своей осью "z" ортогонально оси первой рабочей камеры 4 в плоскости "xoy" и соединенная своим входом с выходом первой рабочей камеры 4 с образованием замкнутой газовой цепи, при этом во второй рабочей камере 16 также на входе размещен блок 15 формирования второй ламинарной струи, а на выходе - второй анемочувствительный блок. Изобретение обеспечивает возможность измерения угловой скорости в трех плоскостях "xoz", "yoz" и "хоу", а последовательная замкнутая пневматическая цепь повышает точность измерения за счет одинакового расхода газа в обеих рабочих камерах. 1 ил.

2527529
выдан:
опубликован: 10.09.2014
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ИНТЕГРАЛЬНОГО АКСЕЛЕРОМЕТРА

Изобретение относится к измерительной технике и может быть использовано при изготовлении интегральных акселерометров.

Чувствительный элемент интегрального акселерометра выполнен из проводящего монокристаллического кремния и содержит маятник 3, соединенный с помощью упругих подвесов 2 с каркасной рамкой 1, обкладки 4, соединенные с каркасной рамкой 1 через площадки 6, расположенные на каркасной рамке 1. На обкладках 4 выполнены выемки 7 в местах соединения с площадками 6, расположенными на каркасной рамке 1. На поверхностях выемок 7 и площадок 6 сформированы последовательно слои диэлектрика 10 и металла 11 для улучшения качества соединения.

Дифференциальный конденсатор, необходимый для функционирования интегрального акселерометра, образован проводящей поверхностью кремниевого проводящего маятника 3 и металла 11, нанесенного на обкладки 4 со стороны маятника 3 с образованием емкостного зазора 5.

Техническим результатом является улучшение метрологических характеристик путем усовершенствования конструкции чувствительного элемента интегрального акселерометра. 3 з.п. ф-лы, 2 ил.

2526789
выдан:
опубликован: 27.08.2014
АКСЕЛЕРОМЕТР

Изобретение относится к системам навигации и может применяться в приборах измерения механических величин компенсационного типа. Техническим результатом изобретения является повышение точности измерения. Акселерометр содержит чувствительный элемент, датчик момента, включенный в отрицательную обратную связь. В акселерометр введены две отрицательные интегрирующие обратные связи, одна с выхода датчика угла на один из входов датчика момента одновременно через усилитель обратной связи и первый интегратор, другая, отрицательная интегрирующая обратная связь, реализована с выхода датчика угла на другой вход датчика момента последовательно по информационным входам через усилитель, фильтр, компаратор, преобразователь уровня, пару ждущих синхронных генераторов, реверсивный двоичный счетчик, схему сравнения, второй интегратор, триггер, электронный ключ. Дополнительные входы компаратора соединены с выходом генератора вспомогательной частоты. Вход электронного ключа соединен с выходом генератора тока, и вход схемы сравнения соединен с выходом генератора вспомогательной частоты через суммирующий двоичный счетчик, и выход реверсивного двоичного счетчика является цифровым кодом устройства. 3 ил.

2526589
выдан:
опубликован: 27.08.2014
СПОСОБ ОЦЕНКИ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ДАТЧИКОВ УГЛОВОЙ СКОРОСТИ

Изобретение относится к измерительной технике и может быть использовано для определения динамических характеристик датчиков угловой скорости в условиях воздействия на них статических ускорений. Способ основан на использовании двойной центрифуги с независимыми приводами двух платформ - ротора и установленного на нем поворотного стола. Исследуемый датчик угловой скорости устанавливается на поворотный стол таким образом, что ось вращения малого стола совпадает с осью чувствительности датчика угловой скорости. При задании скорости вращения ротора для обеспечения воздействия статического ускорения и скорости вращения поворотного стола, изменяющейся по гармоническому закону, в направлении, противоположном направлению вращения ротора центрифуги, на исследуемый датчик угловых скоростей будет поступать модулированный сигнал угловой скорости заданной частоты. Определение амплитудно-частотных и фазочастотных характеристик датчика производится путем последовательного изменения частоты задаваемой гармонической угловой скорости, а также сравнения сигналов на входе и выходе исследуемого датчика. Технический результат заключается в возможности оценки динамических характеристик датчиков угловой скорости при воздействии на них статических ускорений.

2526508
выдан:
опубликован: 20.08.2014
СПОСОБ НАСТРОЙКИ СТРУННОГО АКСЕЛЕРОМЕТРА

Изобретение относится к измерительной технике, а точнее к струнным акселерометрам для автономного определения параметров движения летательных аппаратов и может быть использовано при производстве струнных акселерометров. Сущность изобретения достигается тем, что способ настройки струнного акселерометра, содержащего струну прямоугольного сечения и консольно-закрепленный пластинчатый подвес с грузом, включающий закрепление концов струны между двух плоскостей, предварительно механически обработанных в двух взаимно перпендикулярных направлениях поперек и вдоль струны, и отличается тем, что струну выставляют по оси симметрии подвеса перпендикулярно его плоскости, закрепляют последовательно концы струны на грузе и корпусе при совмещении поверхностей крепления в одну плоскость, сравнивают частоту автоколебаний струны с заданной и при необходимости корректируют длину струны, исходя из выражения: , где l - изменение длины струны; f и f0 - фактическая и заданная частота колебаний струны; l и y - длина струны и прогиб подвеса при расположении струны в одной плоскости, при этом вновь механически обрабатывают поверхности крепления до расположения их в одной плоскости, причем длину струны уменьшают, если частота меньше заданной, и увеличивают, если больше, затем прикладывают к грузу в месте крепления струны усилие, плавно изменяющее натяжение струны в рабочем диапазоне частот, и оценивают изменение амплитуды сигнала со струны, добиваясь точной установкой струны попадания частоты и амплитуды сигнала в заданный допуск, после чего проводят термомеханическое старение акселерометра. Изобретение позволяет сократить длительность стабилизации параметров, время сборки и увеличить выход годных струнных акселерометров при изготовлении. 5 ил.

2526200
выдан:
опубликован: 20.08.2014
УСТРОЙСТВО ПРИВОДА КЛАПАНОВ ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Изобретение может быть использовано в устройствах привода клапанов двигателей внутреннего сгорания. Устройство привода клапанов для двигателя внутреннего сгорания содержит основной кулачковый вал (1), первый установленный без возможности проворота и с возможностью аксиального смещения на основном кулачковом вале (1) кулачковый элемент (6), второй установленный без возможности проворота и с возможностью аксиального смещения на основном кулачковом вале (1) кулачковый элемент (11) и сенсорный блок (7). Первый кулачковый элемент (6) содержит первую шестерню (9) импульсного сенсора. Второй кулачковый элемент (11) содержит вторую шестерню (10) импульсного сенсора. На основном кулачковом вале (1) расположена третья установленная без возможности проворота и с аксиальной фиксацией шестерня (8) импульсного сенсора. Технический результат заключается в повышении надежности определения аксиального положения кулачковых элементов и радиального положения кулачкового вала. 9 з.п. ф-лы, 6 ил.

2526145
выдан:
опубликован: 20.08.2014
СПОСОБ ЗАПУСКА РЕГИСТРИРУЮЩИХ СИСТЕМ И ИЗМЕРИТЕЛЬ СРЕДНЕЙ СКОРОСТИ МЕТАЕМОГО ОБЪЕКТА

Изобретение относится к испытательной технике, а именно к внешнетраекторной регистрации параметров пролета метаемого объекта (МО). Способ включает установку по траектории полета метаемого объекта в начале и конце мерной базы индукционных датчиков, регистрацию моментов времени пролета первого и второго измерительных сечений и времени пролета объектом мерной базы, формирование сигнала на запуск хронографических регистрирующих систем после пролета метаемым объектом первого измерительного сечения. Индукционные датчики выполняют содержащими полесоздающие и полевоспринимающие устройства, установленные в измерительных сечениях напротив друг друга с возможностью пролета между ними метаемого объекта, в числе регистрирующих систем дополнительно запускают фотовидеорегистрирующую систему, которую размещают на расстоянии от второго измерительного сечения, равном или меньшем длины мерной базы, а формирование сигнала на запуск фотовидеорегистрирующей системы производят с синхронизацией по заданным координатам траектории полета в единой шкале времени проведения измерений с задержкой по времени относительно импульса поджига заряда метательной установки, равной времени пролета метаемым объектом мерной базы. Измеритель состоит из первого 27 и второго 28 индукционных датчиков, регистрирующих момент времени пролета метаемым объектом 29 первого 30 и второго 31 измерительных сечений мерной базы. Датчики 27 и 28 жестко закреплены в фиксирующих сечениях 30 и 31 перпендикулярно направлению движения МО в едином каркасе 33, выполненном с возможностью перемещения вдоль траектории полета метаемого объекта 29. Каждый индукционный датчик 27, 28 выполнен содержащим полесоздающее (постоянный магнит) и полевоспринимающее (катушка индуктивности) устройства (1, 3 и 2, 4 соответственно), установленные в измерительных сечениях 30 и 31 напротив друг друга с возможностью пролета между ними метаемого объекта 29. Измеритель также содержит счетное устройство 11, первую 10, вторую 12 и третью 15 схемы согласования, первый 5 и второй 7 формирователи импульсов, схему переключения режима 6, генератор тактовых импульсов 8, схему обнуления 9, схему совпадения «И» 14, первый 13 и второй 16 идентичные расширители импульсов, первый 17, второй 20 и третий 18 выходные каскады, адаптер связи ПЭВМ 19, цифровое табло 25 (для отображения скорости пролета МО через фиксирующие сечения), ПЭВМ 23. Технический результат заключается в повышении надежности и точности хронографирования. 2 н. и 1 з.п. ф-лы, 2 ил.

2525687
выдан:
опубликован: 20.08.2014
СПОСОБ ИЗМЕРЕНИЯ УГЛОВОЙ СКОРОСТИ ВРАЩЕНИЯ ТРЕХФАЗНОГО АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ

Изобретение относится к измерительной технике и может быть использовано в электроприводах для измерения угловой скорости вращения в установившихся и переходных режимах. Способ заключается в измерении мгновенных значений фазных токов i a, ib и напряжений ua, ub на фазах А и В, подводимых к статору, температуры проводников обмотки статора и частоты f основной гармоники напряжения статора трехфазного асинхронного электродвигателя, при известных активном сопротивлении обмотки статора , активном сопротивлении приведенного ротора , полной индуктивности обмотки статора , приведенной полной индуктивности обмотки ротора , взаимной индуктивности обмоток статора и ротора . Определяют коэффициент как отношение полной индуктивности обмотки статора к приведенной полной индуктивности обмотки ротора , коэффициент как отношение взаимной индуктивности обмоток статора и ротора к приведенной полной индуктивности , постоянную времени обмотки ротора как отношение приведенной полной индуктивности к приведенному активному сопротивлению обмотки ротора . Определяют сопротивление обмотки статора с учетом температурного коэффициента, динамическую дифференциальную составляющую относительного значения угловой скорости, динамическую интегральную составляющую относительного значения угловой скорости и мгновенное значение угловой скорости. Затем, используя полученные значения, определяют угловую скорость вращения трехфазного асинхронного электродвигателя. Технический результат заключается в повышении точности определения угловой скорости вращения в динамических режимах работы электропривода. 10 ил.

2525604
выдан:
опубликован: 20.08.2014
КОСМИЧЕСКИЙ ИЗМЕРИТЕЛЬ ПРИРАЩЕНИЯ СКОРОСТИ

Изобретение относится к измерительным приборам космического аппарата (КА) и может использоваться для высокоточного определения малого приращения скорости поступательного движения КА. Измеритель имеет полый шарообразный корпус (1), на внешней поверхности которого находятся электромагниты (2). На внутренней поверхности корпуса (1) расположена сеть адресных фотоприемников, а внутри корпуса - инерционная масса (5). Электромагнитный подвес массы (5) выполнен в виде встроенных электромагнитов (6), взаимодействующих с электромагнитами (2). Датчик положения массы (5) представляет собой оптрон из трех оптопар. В оптопарах излучателями служат светодиоды внутри массы (5) с оптическими осями (27). Излучение вдоль этих осей попадает на указанные фотоприемники корпуса. Светодиоды питаются от аккумулятора гелиевого типа, встроенного в массу (5). Он заряжается от токов в обмотках электромагнитов (6). Режимы работы устройства задаются оператором (10) через блок контроля и управления (7) с программным обеспечением (9). Питание осуществляется от источника (8). Технический результат изобретения состоит в создании высокоточного (погрешность менее 6 %) прибора для измерения приращений скорости при действии ускорений негравитационной природы порядка (10 -6-10-10) м/с2. 1 з.п. ф-лы, 6 ил.

2524687
выдан:
опубликован: 10.08.2014
АНЕМОМЕТРИЧЕСКИЙ ЗОНД С ОДНОЙ ИЛИ НЕСКОЛЬКИМИ ПРОВОЛОЧКАМИ И СПОСОБ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к измерительной технике, в частности к анемометрическим измерениям, а также к способам изготовления анемометрического зонда. Способ изготовления анемометрического зонда для измерения вблизи стенки, включающий позиционирование и удержание прямого участка проволочки (2), содержащей металлический сердечник (20) диаметром d, составляющим от 0,35 до 0,6 мкм, окруженный защитной оболочкой (22), на двух поверхностях (61', 63'). Удаление части оболочки (22) для оголения активной измерительной зоны (14) проволочки длиной l, при этом соотношение l/d составляет от 600 до 1500. Крепление проволочки пайкой на двух стержнях (4, 6, 40, 60) зонда. Также заявлен анемометрический зонд, изготовленный по вышеизложенному способу. Технический результат заключается в повышении точности анемометрического зонда. 2 н. и 23 з.п. ф-лы, 15 ил.

2524448
выдан:
опубликован: 27.07.2014
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ВЕКТОРА СКОРОСТИ ДВИЖЕНИЯ ИЗОБРАЖЕНИЯ ОБЪЕКТА СО СЛУЧАЙНЫМ РАСПРЕДЕЛЕНИЕМ ЯРКОСТЕЙ

Изобретение относится к оптоэлектронным устройствам для определения параметров движения объектов и может быть использовано для измерения составляющих вектора скорости движения летательных и плавательных аппаратов различного назначения относительно подстилающей поверхности. Устройство содержит проекционно-оптическую систему, вычислительный блок, два оптоэлектронных канала обработки информации, каждый из которых включает два блока сравнения, блок суммирования, блок дифференцирования и приемник излучения в виде прямоугольника. При этом в устройство в каждый канал введены два дополнительных блока суммирования, три блока сравнения, блок деления, приемник излучения, смещенный относительно первого приемника излучения. Технический результат заключается в повышении точности определения параметров вектора скорости движения за счет уменьшения чувствительности к низкочастотным шумам при одновременном уменьшении чувствительности к изменению освещенности сцены. 1 ил.

2524441
выдан:
опубликован: 27.07.2014
СЛЕЖЕНИЕ ЗА ПОЛОЖЕНИЕМ ГОЛОВЫ

Изобретение относится к системе и способу слежения за положением головы. Техническим результатом является повышение эффективности формирования звуковых образов. Система (400) слежения за положением головы содержит: измерительный датчик (410) для измерения перемещения головы, чтобы предоставлять показатель (401), представляющий перемещение головы; и схему (420) обработки для извлечения угла (300) поворота головы (100b) пользователя (100) относительно опорного направления (310) из показателя (401), при этом опорное направление (310), используемое в схеме (420) обработки, зависит от перемещения пользователя (100), причем схема (420) обработки дополнительно выполнена с возможностью определять опорное направление (310) как среднее направление головы (100b) пользователя во время перемещения пользователя (100); при этом усреднение является адаптивным и адаптируется к большим перенаправлениям быстрее, чем к небольшим перенаправлениям. 3 н. и 4 з.п. ф-лы, 9 ил.

2523961
выдан:
опубликован: 27.07.2014
СПОСОБ БЕСКОНТАКТНОЙ ОПТИКО-ЛАЗЕРНОЙ ДИАГНОСТИКИ НЕСТАЦИОНАРНОГО ГИДРОПОТОКА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Изобретение относится к контрольно-измерительной технике и позволяет исследовать кинематические характеристики гидропотоков. Способ, основанный на совместном использовании лазерной доплеровской анемометрии (ЛДА) и цифровой трассерной визуализации (PIV), включает установку CCD камер под углом, вычисленным с помощью корректирующего модуля пробоотбора взвеси калибровочных частиц, определение временного интервала между сериями изображений, фиксирование и запись изображений засеянных частиц и статистическое условное осреднение мгновенных полей скорости, при этом внесение корректировок в параметры пороговой чувствительности CCD камер осуществляют в продолжение исследований при уменьшении регистрируемых событий на 10% или более, либо через каждые 3 часа. Устройство включает ЛДА, процессор обработки доплеровских сигналов, две CCD камеры, две оптические призмы, процессор обработки изображений, персональный компьютер и корректирующий модуль пробоотбора взвеси калибровочных частиц, содержащий цилиндрическую кювету для размещения образца рабочей жидкости, лазерный излучатель, шесть или более фотоприемников, установленных вокруг цилиндрической кюветы. Изобретение способствует повышению эффективности проведения измерений характеристик нестационарного гидропотока за счет адаптивного учета изменения оптических свойств исследуемой среды и тем самым повышению эффективности использования измерительного оборудования. 2 н.п. ф-лы, 2 ил.

2523737
выдан:
опубликован: 20.07.2014
ЦЕНТРИФУГА

Изобретение относится к испытательной технике и предназначено для испытаний и градуировок акселерометрических датчиков и другой навигационной аппаратуры, определяющей параметры движения различных по назначению объектов. Центрифуга содержит платформу в виде консольной балки с площадкой для изделия на свободном конце, смонтированной другим концом на вращаемом шпинделе. Консольная балка выполнена телескопической. Подвижная часть консольной балки, несущая площадку, связана с другой частью посредством гибкой связи. Достигается разделение радиальных и поперечных нагрузок, воспринимаемых платформой, между двумя ее элементами: гибкой связью и телескопической балкой. 6 з.п. ф-лы, 4 ил.

2522625
выдан:
опубликован: 20.07.2014
ДАТЧИК СКОРОСТИ

Изобретение относится к измерительной технике и может быть использовано как датчик скорости для расходомеров жидких и газообразных сред, а также для автоматического контроля вращения, углового перемещения механизмов и машин. Сущность изобретения заключается в том, что датчик скорости содержит немагнитный корпус, чувствительный элемент, размещенный в последнем и состоящий из вращающихся ферромагнитных лопастей, установленных на оси, индуктивные измерительные катушки, расположенные на корпусе в плоскости вращения ферромагнитных лопастей, при этом на корпусе выполнены кольцевые пазы, имеющие в поперечном сечении корпуса форму равностороннего многоугольника, причем вершины многоугольника одного паза смещены относительно вершин многоугольника другого паза вокруг оси чувствительного элемента, а индуктивные измерительные катушки размещены соответственно в указанных кольцевых пазах. Технический результат - повышение точности и надежности измерений, а также расширение диапазона измерений в областях низких и высоких скоростей. 2 з.п. ф-лы, 9 ил.

2521716
выдан:
опубликован: 10.07.2014
СПОСОБ ОБНАРУЖЕНИЯ ОБЪЕКТОВ, ИЗМЕРЕНИЯ СКОРОСТИ, ДАЛЬНОСТИ И УГЛОВЫХ КООРДИНАТ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Способ включает детектирование отраженных импульсов света, оцифровывание принятых сигналов, расчет дальностей до объектов и скоростей движущихся объектов, определение угловых координат. При оцифровывании сигналы дифференцируют. Одновременно измеряют временные интервалы между моментами излучения и частями дифференцированных сигналов, соответствующих фронтам принятых импульсов света, и временные интервалы t2 между частями дифференцированных сигналов, соответствующих фронтам и спадам принятых импульсов света. Рассчитывают скорости движущихся объектов: ,

где с - скорость света в среде; t 1 - длительность излученного импульса света. Устройство содержит блок оцифровывания сигнала, выполненный из многоканального измерителя временных интервалов и n-дифференциаторов, входы которых соединены с выходами фоточувствительных элементов, а выходы - с входами сигналов многоканального измерителя временных интервалов, выход которого соединен с входом блока управления. Технический результат - одновременность и точность обнаружения объектов, измерения скорости движения объектов, расстояний и угловых координат. 2 н.п. ф-лы, 1 ил.

2521203
выдан:
опубликован: 27.06.2014
ЕМКОСТНЫЙ ДАТЧИК ПЕРЕМЕЩЕНИЙ

Изобретение относится к микромеханическим устройствам и может применяться в интегральных акселерометрах и гироскопах. Техническим результатом заявленного изобретения является повышение точности емкостного датчика при измерении угловых перемещений. Технический результат достигнут посредством разделения пополам неподвижных электродов и перекрестного включения секторов в смежные плечи дифференциальных конденсаторов. В результате разделения электродов датчик стал нечувствителен к плоскопараллельной составляющей движений, при этом появилась возможность измерять одну компоненту, а именно угловую. 3 ил.

2521141
выдан:
опубликован: 27.06.2014
СПОСОБ ГРАДУИРОВКИ ПЪЕЗОЭЛЕКТРИЧЕСКОГО АКСЕЛЕРОМЕТРА НА НИЗКИХ ЧАСТОТАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к области измерительной техники, в частности к способам и устройствам для определения чувствительности пьезоэлектрических акселерометров на низких частотах. Сущность способа градуировки пьезоэлектрического акселерометра на низких частотах заключается в том, что акселерометр поворачивают в гравитационном поле Земли с помощью поворотной платформы и измеряют с помощью измерительной цепи выходное напряжение акселерометра, при этом предварительно устанавливают на поворотную платформу акселерометр с его осью чувствительности в вертикальной плоскости под любым углом к горизонтальной оси, совмещают центр масс инерционного элемента акселерометра с осью вращении, меняя частоту вращения, поворачивают акселерометр на угол более 360° на каждой частоте, определяют максимальные значения выходных сигналов на каждой из частот, по которым определяют коэффициенты преобразования для построения амплитудно-частотной характеристики акселерометра в области низких частот. Поворотная установка содержит основание, на котором установлена посредством опор вращения платформа, которая состоит из вала и насадки, имеющей горизонтальную площадку для крепления испытуемого акселерометра, при этом насадка установлена с возможностью перемещения в плоскости, перпендикулярной оси вала, на торцевых поверхностях вала нанесена координатная сетка для фиксации их взаимного положения в плоскости сопряжения. Технический результат: уменьшение погрешности калибровки, вызванной действием центробежных сил. 2 н.п. ф-лы, 2 ил.

2519833
выдан:
опубликован: 20.06.2014
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЭМИССИИ ПАРНИКОВЫХ ГАЗОВ ИЗ ПОЧВЫ И РАСТЕНИЙ

Изобретение относится к области сельского хозяйства, а именно к почвоведению и экологии, в частности к способам измерения эмиссии парниковых газов из почвы и растений с использованием камер для отбора проб. Устройство для измерения эмиссии парниковых газов из почвы и растений выполнено разъемным и состоит из цилиндрических камеры и основания. Камера крепится к основанию посредством двух горизонтальных пластин с зажимами. Пластины смонтированы в верхней части основания и нижней части камеры. По центру пластин выполнены отверстия, диаметром равные диаметру цилиндра. Нижняя часть основания выполнена со скосами, а в верхней части камеры герметично установлена крышка с эластичной пробкой. Камера содержит приспособление для вентилирования в ней воздуха. Камера может быть выполнена, например, из непрозрачного пластика. Техническим результатом является расширение функциональных возможностей устройства. 1 з.п.ф-лы, 3 ил.

2518979
выдан:
опубликован: 10.06.2014
СИСТЕМА ВОЗДУШНЫХ СИГНАЛОВ ВЕРТОЛЕТА

Изобретение относится к устройствам для измерения воздушных сигналов вертолета. Система воздушных сигналов вертолета содержит многоканальный аэрометрический приемник, имеющий 2n трубок полного давления и 2n приемных отверстий статического давления, выходы 2n трубок полного давления сообщены пневмопроводами со входами пневмоэлектрических преобразователей с электроизмерительными схемами, которые подключены к мультиплексору, выход которого через последовательно соединенные АЦП и микропроцессор подключен к системе отображения информации, выход которой является выходом системы по высотно-скоростным параметрам. Система воздушных сигналов вертолета дополнительно содержит блок пневмокоммутации каналов полного давления, который сообщен на входах пневмопроводами с трубками полного давления, и блок формирования первичных информативных сигналов по высотно-скоростным параметрам и сигнала управления периодичностью автокоррекции, сообщенный на пневматическом входе пневмопроводом с 2n приемными отверстиями статического давления, первый и второй выходы которого соединены с мультиплексором, третий его выход - со входом системы отображения информации, а четвертый - с электрическим входом блока пневмокоммутации каналов полного давления. Технический результат - существенное уменьшение погрешности измерения высотно-скоростных параметров вертолета, что особенно важно в области малых скоростей полета. 5 з.п. ф-лы, 3 ил.

2518871
выдан:
опубликован: 10.06.2014
СПОСОБ ОПРЕДЕЛЕНИЯ УСЛОВИЙ ПОДХОДА СНАРЯДА К МИШЕНИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к области полигонных испытаний, в частности для определений условий подхода снаряда к мишени. Способ заключается в использовании датчиков в виде линеек фотоприемников, размещенных в вертикальной и горизонтальной плоскостях, фиксации сработавших элементов фотоприемников первого и второго датчиков в момент пролета снаряда, определении координат движения метаемого тела, выдачи информации о скорости метаемого тела, координат его пролета относительно первого и второго датчиков и углов похода снаряда к мишени. Изобретение позволяет повысить информативность определения условий подхода снаряда к мишени. 2 н.п. ф-лы, 3 ил.

2518853
выдан:
опубликован: 10.06.2014
НИЗКОЧАСТОТНЫЙ СКЛАДНОЙ МАЯТНИК С ВЫСОКИМ КОЭФФИЦИЕНТОМ МЕХАНИЧЕСКОГО КАЧЕСТВА И СЕЙСМИЧЕСКИЙ ДАТЧИК С УКАЗАННЫМ МАЯТНИКОМ

Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведочных работ. Заявлен складной маятник, содержащий основание (F), контрольный груз (РМ), математический маятник (SP), перевернутый маятник (IP). Причем математический маятник и перевернутый маятник соединены на одном из своих концов с контрольным грузом (PM), а на другом конце - с основанием (F) посредством четырех соответствующих соединительных устройств (G). При этом контрольный груз не соединен с основанием (F) и выполнен с возможностью колебания. Каждое соединительное устройство (G), относящееся к маятнику (PS), содержит одно или более соединений в состоянии растяжения. Каждое из соединительных устройств (G), относящееся к перевернутому маятнику (IP), содержит одно или более соединений в состоянии сжатия. Изобретение также относится к сейсмическому датчику, в котором применен складной маятник согласно изобретению. Технический результат - повышение функциональных возможностей устройства. 2 н. и 8 з.п. ф-лы, 7 ил.

2518587
выдан:
опубликован: 10.06.2014
ОПТИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ЖЕЛЕЗНОДОРОЖНОГО СОСТАВА

Изобретение относится к области железнодорожного транспорта, а именно к способам определения скорости железнодорожного состава. Способ заключается в том, что регистраторы, представляющие собой два расположенные на заданной высоте от железнодорожного полотна видеорегистратора, производят съемку железнодорожного полотна синхронно, в каждый момент времени запоминается текущий кадр с первого видеорегистратора, определяется кадр с тем же фрагментом железнодорожного полотна в видеопоследовательности со второго видеорегистратора, вычисляется сдвиг между этими кадрами, и по разнице порядковых номеров кадров и сдвигу между ними определяется скорость по формуле

,

где

F - темп съемки видеорегистраторов (количество кадров в секунду),

S - смещение между видеорегистраторами,

L - сдвиг между кадрами с одинаковым фрагментом железнодорожного полотна с двух видеорегистраторов,

N - разность номеров кадров с одинаковым фрагментом железнодорожного полотна со второго и первого видеорегистраторов. 5 ил.

2518078
выдан:
опубликован: 10.06.2014
СПОСОБ ДЛЯ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ СКОРОСТИ И ПЕРЕМЕЩЕНИЯ ОБЪЕКТА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Изобретение относится к области измерения таких динамических параметров объекта, как скорость и перемещение. Исследуемый объект, освещенный осветителем, закрепляют на штоке, перемещающемся по направляющим с горизонтальной меткой. Видеокамеру устанавливают по отношению к исследуемому объекту таким образом, чтобы ее оптическая ось была перпендикулярна плоскости движения исследуемого объекта и направлена на горизонтальную метку. Одновременно с началом движения исследуемого объекта включают видеокамеру, которая покадрово фиксирует перемещение делений мерной линейки относительно горизонтальной метки, сравнивают значения делений мерной линейки, совпадающих с горизонтальной меткой, на следующих друг за другом кадрах и, учитывая перемещение исследуемого объекта и скорость видеосъемки, рассчитывают скорость исследуемого объекта. Изобретение позволяет усовершенствовать процесс регистрации динамики процесса и позволяет производить одновременный анализ динамики различных частей исследуемого объекта и сохранить результаты измерений в наглядной форме в виде отдельных кадров. 2 н.п. ф-лы, 1 ил.

2518018
выдан:
опубликован: 10.06.2014
СПОСОБ ОБНАРУЖЕНИЯ ВРАЩЕНИЯ И НАПРАВЛЕНИЯ ВРАЩЕНИЯ РОТОРА

Изобретение относится к способу обнаружения вращения и направления вращения ротора. На роторе (1) позиционирован по меньшей мере один демпфирующий элемент (D), причем на небольшом расстоянии от ротора (1) и демпфирующего элемента (D) установлены два датчика (S1, S2) на расстоянии друг от друга. Датчики (S1, S2) образуют колебательные контуры, демпфируемые в большей или меньшей степени в зависимости от положения демпфирующего элемента (D). После проведения нормирования осуществляют измерения путем отслеживания последовательных положений угла поворота, для чего текущее время затухания датчиков (S1, S2) измеряется в такт частоте взятия отсчетов, а затем к измеренному времени затухания датчиков (S1, S2) применяются правила нормирования. Затем из этих величин образуется вектор, который заносится в систему координат. После этого определяется текущий векторный угол и сравнивается с величиной соответствующего предшествующего векторного угла. В результате сравнения делается вывод о том, вращается ли ротор (1) и выполнено ли это вращение в прямом или обратном направлении. В результате повторения измерений в такт частоте взятия отсчетов вращательные движения ротора (1) регистрируются с большой точностью. 6 з.п. ф-лы, 6 ил.

2517825
выдан:
опубликован: 27.05.2014
МОЛЕКУЛЯРНО-ЭЛЕКТРОННЫЙ АКСЕЛЕРОМЕТР

Изобретение относится к устройствам для измерения ускорения и может быть использовано в качестве первичного преобразователя в системах инерциальной навигации и сейсмометрии. Молекулярно-электронный акселерометр содержит диэлектрический корпус с двумя параллельными неподвижными электродами и третий подвижный электрод, установленный между неподвижными электродами. Подвижный электрод посредством упругих подвесов связан с жесткой рамкой, вмонтированной в корпус. Все электроды находятся в контакте с электропроводящей жидкостью, которая заполняет полость корпуса, и имеют внешние электрические выводы. Техническим результатом является уменьшение значения погрешности измерения ускорения, а также обеспечение широкого диапазона измерения ускорения при сохранении высокой чувствительности преобразователя во всем диапазоне измерения ускорения. 4 з.п. ф-лы, 4 ил.

2517812
выдан:
опубликован: 27.05.2014
Наверх