термонасос
Классы МПК: | F04D19/04 для создания глубокого вакуума, например молекулярные вакуумные насосы |
Автор(ы): | Адаменко Игорь Николаевич[UA] |
Патентообладатель(и): | Адаменко Игорь Николаевич (UA) |
Приоритеты: |
подача заявки:
1991-04-19 публикация патента:
20.03.1995 |
Изобретение относится к вакуумной технике. Сущность изобретения заключается в том, что термонасос содержит камеру 1, в которой установлен фильтр 2, разделяющий ее на две секции. Фильтр имеет сквозные каналы, ширина которых меньше длины свободного пробега молекул перекачиваемого газа. На одной стороне фильтра 2 расположено приспособление 3 для нагрева, на противоположной стороне - приспособление 4 для охлаждения. 1 ил.
Рисунок 1
Формула изобретения
ТЕРМОНАСОС, содержащий камеру, разделенную на две секции перегородкой, и приспособления для нагревания и охлаждения соответственно противоположных сторон перегородки, отличающийся тем, что, с целью повышения эффективности путем увеличения перепада давления при упрошении и удешевлении конструкции, перегородка выполнена в виде фильтра со сквозными каналами, ширина которых меньше длины свободного пробега молекул перекачиваемого газа.Описание изобретения к патенту
Изобретение относится к вакуумной технике и может быть использовано для перекачки различных газов. В разных областях науки и техники существует необходимость использования конструктивно простых и надежных устройств, не содержащих движущихся элементов, для перекачки различных газов. К таким насосом относится известный адсорбционный насос, состоящий из камеры, в которой находится адсорбент, и устройства для его охлаждения (Иванов В.И. Безмасляные вакуумные насосы. - Л.: Машиностроение, 1980, с.66-67). К недостаткам этого насоса относятся периодичность работы и неэффективность его применения в случаях инертных газов и газов с низкой точкой кипения. Наиболее близким к заявляемому техническому решению является известный термомолекулярный насос, содержащий камеру, разделенную на две секции диафрагмой, против отверстия которой располагается активная пластина из особого материала, а также приспособления для нагревания пластины и охлаждения диафрагмы и стенок камеры (Иванов В.И. Безмасляные вакуумные насосы. - Л.: Машиностроение, 1980, с.41-42). Термомолекулярный насос в отличие от адсорбционного работает в непрерывном режиме и перекачивает любые газы. Однако такой насос может работать при относительно малых перепадах давления, и его конструкция предполагает наличие особого активного материала, из которого изготавливается пластина. Целью изобретения является повышение эффективности за счет увеличения перепада давления при упрощении и удешевлении конструкции. Цель достигается тем, что в термонасосе, содержащем камеру, разделенную на две секции перегородкой, и приспособления для нагревания и охлаждения соответственно противоположных сторон перегородки, согласно изобретению перегородка представляет собой фильтр со сквозными каналами, ширина а которых меньше длины свободного пробега l молекул перекачиваемого газа. Установлено, что разные температуры на противоположных сторонах фильтра с a < l обеспечивают процесс термодиффузии газа в нем, приводящий к движению газа в направлении более высокой температуры. При a < l столкновения молекул газа между собой внутри фильтра, как следует из расчетов, приводят к резкому снижению эффективности работы насоса. Не известно использование фильтров с a < l для перекачки газа за счет его термодиффузии в твердом наполнителе, образующем фильтр. Это дает основание считать предлагаемое техническое решение соответствующим критерию "существенное отличие". Сущность заявленного технического решения схематически отражена на чертеже. Термонасос содержит камеру 1, в которой установлен фильтр 2, разделяющий ее на две секции. Фильтр имеет сквозные каналы, ширина а которых меньше длины свободного пробега l молекул перекачиваемого газа. Необходимые каналы, обеспечивающие неравенствоa < l, (1) могут быть получены путем спрессовывания порошка, образованного частицами соответствующих размеров, либо посредством укладки в пучок нитей, пластин, капилляров и т.д. На одной стороне фильтра расположено приспособление 3 для нагрева, на противоположной - приспособление 4 для охлаждения. Приспособлением для нагрева может являться вмонтированная в эту часть фильтра спираль, по которой пропускается ток, приспособлением для охлаждения - радиатор, по которому для большей эффективности пропускается вода или какой-либо хладагент. Термонасос работает следующим образом. С помощью приспособлений для нагрева 3 и охлаждения 4 поддерживаются разные температуры Т2 и Т1 (Т2 > Т1) на противоположных концах фильтра, что приводит к процессу термодиффузии газа в нем, вызывающему движение газа в направлении более высокой температуры. Предлагаемый термонасос, как и термомолекулярный насос, не содержит движущихся элементов и использует для перекачки газа разность температуры, но работает на основе принципиально другого физического явления - термодиффузии газа в фильтре. В отличие от этого в термомолекулярном насосе направленный поток газа получается посредством термомолекулярного эффекта накачки, возникающего за счет того, что разогретая активная поверхность твердого тела смещает пик интенсивности рассеивания молекул в сторону нормали к данной поверхности. С целью получения количественных соотношений, описывающих работу предлагаемого термонасоса, и сравнения его с прототипом необходимо рассмотреть термодиффузию газа в узких каналах, удовлетворяющих неравенству (1). Не известно об описании такого явления и использовании его для перекачки газа. Исходным, как и в случае диффузии в смеси двух газов (Лифшиц Е.М., Питаевский Л.П. Физическая кинетика. - М.: Наука, 1979, с.54-56), является кинетическое уравнение для функции распределения молекул газа f, которое в стационарном случае записывается в виде









Считают, что наряду с неравенством (1) выполняется неравенство
L >> a, (4) где L - длина фильтра, на которой температура меняется от значения Т1 до Т2 (Т1 < Т2). Тогда решение уравнения (2) можно записать в виде
f = fo + f1 (5) где
fo =






f1 = -



Подставив выражения (5) - (7) в уравнение (3), получают





j =






S =
















P2/P1=



Класс F04D19/04 для создания глубокого вакуума, например молекулярные вакуумные насосы
турбомолекулярный насос с однопоточной турбомолекулярной проточной частью - патент 2490519 (20.08.2013) | ![]() |
ротор или статор турбомолекулярного насоса - патент 2455529 (10.07.2012) | |
способ изготовления роторов и статоров турбомолекулярного насоса - патент 2435076 (27.11.2011) | |
изделия с покрытием - патент 2413746 (10.03.2011) | ![]() |
вакуумный газоротационный насос - патент 2237824 (10.10.2004) | |
геттерный насос - патент 2199027 (20.02.2003) | |
молекулярный вакуумный насос - патент 2168070 (27.05.2001) | |
двухпоточный молекулярный вакуумный насос - патент 2107840 (27.03.1998) | |
комбинированный турбомолекулярный насос - патент 2105905 (27.02.1998) | |
ступень молекулярного насоса - патент 2016256 (15.07.1994) |