катализатор окислительного дегидрирования метанола в формальдегид и способ его получения

Классы МПК:B01J29/068 благородные металлы
B01J37/30 ионный обмен
C07C47/052 получение окислением метанола
Автор(ы):, , , , ,
Патентообладатель(и):Акционерное общество открытого типа "Акрон"
Приоритеты:
подача заявки:
1995-12-27
публикация патента:

Предлагается катализатор окислительного дегидрирования метанола в формальдегид, содержащий серебро и алюмосиликатный носитель. Катализатор состоит из аморфного непористого алюмосиликата с молярным соотношением оксида кремния к оксиду алюминия от 1 до 10 и серебра, связанного с указанным алюмосиликатом в виде иона, причем количество серебра составляет от 0,01 до 1 моль на 1 моль содержащегося в алюмосиликате алюминия. Предлагается также способ изготовления такого катализатора, по которому в аморфный алюмосиликат с молярным соотношением оксида кремния к оксиду алюминия от 1 до 10 посредством ионного обмена вводится ион серебра в количестве от 0,01 до 1 моль на 1 моль содержащегося в указанном алюмосиликате алюминия, с активацией полученного продукта нагреванием при температуре 800-1500oC. 2. с. п. ф-лы.

Формула изобретения

1. Катализатор окислительного дегидрирования метанола в формальдегид, содержащий серебро и алюмосиликатный носитель, отличающийся тем, что в качестве алюмосиликатного носителя он содержит аморфный непористый алюмосиликат с молярным отношением оксида кремния к оксиду алюминия от 1 до 10 и серебро в виде иона, связанное с алюмосиликатом, в количестве от 0,01 до 1 моля на 1 моль алюминия, содержащегося в алюмосиликате.

2. Способ получения катализатора окислительного дегидрирования метанола в формальдегид, включающий введение серебра в алюмосиликат с последующей активацией нагреванием, отличающийся тем, что в качестве алюмосиликата используют аморфный алюмосиликат с молярным отношением оксида кремния к оксиду алюминия от 1 до 10 и введение серебра осуществляют путем ионного обмена в количестве 0,01 1 моль на 1 моль содержащегося в алюмосиликате алюминия и активацию осуществляют при 800 1500oС.

Описание изобретения к патенту

Изобретение относится к катализаторам процесса окислительного дегидрирования метанола в формальдегид.

В настоящее время для получения формальдегида методом окислительного дегидрирования метанола используются катализаторы, содержащие в качестве активного компонента серебро. Промышленное применение получили как нанесенные (трегерные) катализаторы, так и массивные катализаторы (кристаллы серебра пористое серебро). Основным преимуществом трегерных катализаторов по сравнению с массивными является малая разовая загрузка серебра и простота в изготовлении Обычно трегерные катализаторы работают на метаноловодной смеси содержащей 60-85 мас метанола, при этом получают формалин концентрацией не более 40% мас. При работе на безводном сырье метаноле без добавления воды на трегерных каталиэаторах происходит быстрая потеря активности и селективности вследствие взаимодействия исходных веществ и/или продуктов реакции с носителем и образования продуктов уплотнения (кокса, сажи). Известно [1] что процесс окислительного дегидрирования метанола на серебросодержащих катализаторах протекает во внешнедиффузионной области, поэтому внутренняя поверхность пористого катализатора, где обмен с потоком затруднен, является причиной образования продуктов уплотнения.

Попытки создания трегерных катализаторов с низким содержанием серебра (ниже 10% мас) приводят к положительным результатам только в начале пробега катализатора. Продолжительный пробег приводит к существенному падению активности и селективности катализаторов с малым содержанием серебра, причиной чего является обнажение поверхности носителя вследствие агрегации частиц серебра.

Известен способ [2] получения формальдегида окислительным дегидгированием метанола на катализаторе, содержащим серебро или содержащем серебро и золото (содержание активного компонента 0,5 10%) на твердом непористом носителе. По этому способу активный компонент наносится на поверхность физическим осаждением паров или ионным напылением. В результате получаются частицы катализатора, не имеющие пор, покрытые тонкой пленкой металла. Вследствие отсутствия пор наблюдается пониженное образование продуктов уплотнения на таком катализаторе, однако в процессе эксплуатации катализатора тонкая пленка металла на поверхности разрушается в результате агрегирования активного компонента или растрескивания носителя. Т.к. общая поверхность катализатора невелика, минимальное ее повреждение отрицательно сказывается на работе катализатора.

Известен способ [3] получения нанесенного серебряного катализатора преимущественно для замены кристаллического серебра в процессе получения формальдегида, по которому на инертный пористый носитель наносится серебро из аммиачного раствора, содержащего жирные кислоты, с последующей сушкой и упариванием. Присутствие жирных кислот необходимо для предотвращения осаждения серебра в глубоких порах носителя. На таком катализаторе продукты уплотнения образуются минимально, т.к. серебро покрывает преимущественно внешнюю поверхность, блокируя внутреннюю. Однако при растрескивании гранул и при агрегировании частиц серебра в процессе длительной работы катализатора становится доступной поверхность носителя, что ведет к снижению активности и селективности катализатора в процессе его пробега.

Мы предлагаем катализатор окислительного дегидрирования метанола в Формальдегид, содержащий серебро и алюмосиликатный носитель, причем в качестве алюмосиликатного носителя он содержит аморфный непористый алюмосиликат с молярным соотношением оксида кремния к оксиду алюминия от 1 до 10 и серебро в виде иона, связанное с алюмосиликатом в количестве от 0,01 до 1 моль на 1 моль алюминия, содержащегося в алюмосиликате.

Нами предлагается также способ изготовления такого катализатора, осуществляемый введением серебра в аморфный алюмосиликат с молярным соотношением оксида кремния к оксиду алюминия от 1 до 10 путем ионного обмена, в количестве от 0,01 до 1 моль на 1 моль содержащегося в алюмосиликате алюминия, с последующей активацией нагреванием при температуре 800 - 1500oC.

Введение иона серебра может проводиться в твердой фазе посредством нагревания смеси алюмосиликатных компонентов с серебросодержащим компонентом до 800 1500oC. В качестве алюмосиликатного компонента может использоваться продукт дегидратации смеси каолинита с кремнеземом.

Введение иона серебра может проводиться из раствора например, при использовании алюмосиликата продукта взаимодействия соли кремниевой кислоты и соли алюминия. Алюмосиликат, обладая ионообменными свойствами, обменивает свои ионы на ионы серебра, в результате чего серебро становится связанным с алюмосиликатной основой катализатора.

При активации нагреванием до 800 1500oC снижается удельная поверхность катализатора, закрываются поры. Агрегации частиц серебра в процессе пробега препятствует алюмосиликатная основа катализатора.

В результате получается катализатор, обладающий следующими преимуществами:

высокая дисперсность серебра, что позволяет применять катализатор с пониженным его содержанием,

равномерное распределение серебра по объему, стойкость частиц серебра к агрегированию, что исключает обнажение поверхности катализатора, лишенной активного компонента, в течение длительного пробега,

отсутствие пор, в которых может происходить образование продуктов уплотнения, вследствие чего появляется возможность использования в качестве сырья безводного метанола с получением концентрированного формалина,

Пример 1. В аморфный алюмосиликат, полученный в виде гелеобразного осадка при взаимодействием 14 л 0,5 молярного раствора силиката натрия, с 2 л 0,5 молярного раствора сульфата алюминия, вводят ион серебра контактированием указанного алюмосиликата с 0,3 л 1 молярного раствора нитрата серебра в течение 8 часов при температуре 20oC, полученный продукт формуют в виде гранул размером 10 мм, высушивают, проводят активацию нагреванием в течение 4 часов при температуре 1000oC, дробят полученную массу, отбирают фракцию 1-3 мм, при этом получают катализатор состава, мас. SiO2 71,5, Al2O3 17,5, Na2O 5,5, Ag- 5,5, имеющий молярное соотношение SiO2/AI2O3 6,95, содержащий серебро в количестве 0,15 моль / моль алюминия. 20 г полученного образца испытывают на лабораторной установке в проточном реакторе диаметром 20 мм, высота слоя катализатора 50 мм, и при концентрации метанола в подаваемой воднометанольной смеси 70% мас, нагрузке по метанолу 100 г/см2 сечения, температуре 690oC получают следующие результаты: конверсия 90% селективность 93%

После 6 месяцев непрерывного пробега катализатора загруженного в количестве 100 г в зону катализа промышленного агрегата синтеза формальдегида при концентрации метанола в подаваемой воднометанольной смеси 65-70% мас, нагрузке по метанолу 100 120 г/см2 сечения, температуре 670 - 700oC, и испытании этого образца вновь в проточном реакторе лабораторной установки получают следующие результаты: конверсия 87% селективность 92%

Пример 2. 100 г измельченного каолинита (2SiO2 катализатор окислительного дегидрирования метанола в   формальдегид и способ его получения, патент № 2102140 Al2O3 катализатор окислительного дегидрирования метанола в   формальдегид и способ его получения, патент № 2102140 2H2O) смешивают со 100 г измельченного гидратированного кремнезема (SiO2 катализатор окислительного дегидрирования метанола в   формальдегид и способ его получения, патент № 2102140 H2O) и с 40 мл 2,5 молярного раствора нитрата серебра, полученный продукт формуют в виде гранул размером 10 мм, высушивают, проводят ионный обмен в твердой фазе путем нагревания при температуре 1000oC в течение 2 часов и активацию при температуре 1400oC в течение 4 часов, дробят полученную массу, отбирают фракцию 1-5 мм, при этом получают катализатор состава: SiO2 71,0, Al2O3 22,75. Ag 6,25, имеющий молярное соотношение SiO2/AI2O3 5,3, содержащий серебро в количестве 0,13 моль/ моль алюминия. 20 г образца полученного катализатора испытывают на лабораторной установке в проточном реакторе диаметром 20 мм, высота слоя катализатора 50 мм, и при концентрации метанола в подаваемой воднометанольной смеси 70% мас, нагрузке по метанолу 100 г/см2 сечения температуре 690oC получают следующие результаты: конверсия 88% селективность 92,5%

После 6 месяцев непрерывного пробега катализатора загруженного в количестве 100 г в зону катализа промышленного агрегата синтеза формальдегида при концентрации метанола в подаваемой воднометанольной смеси 65-70% мас, нагрузке по метанолу 100-120 г/см2 сечения, температуре 670 - 700oC, и испытании этого образца вновь в проточном реакторе лабораторной установки получают следующие результаты: конверсия 86% селективность 90,5%

Класс B01J29/068 благородные металлы

катализатор для селективной очистки этиленовых мономеров от примесей ацетиленовых углеводородов и способ селективной очистки этиленовых мономеров от примесей ацетиленовых углеводородов с его использованием -  патент 2501606 (20.12.2013)
стойкий к старению катализатор окисления no до no2 в потоках выхлопных газов -  патент 2481883 (20.05.2013)
катализатор изомеризации ароматических углеводородов и способ его применения -  патент 2470705 (27.12.2012)
способ получения катализатора на основе благородного металла и его применение -  патент 2351394 (10.04.2009)
катализатор гидрирования аренов и способ его приготовления -  патент 2309796 (10.11.2007)
катализатор изомеризации парафиновых углеводородов (варианты) -  патент 2306979 (27.09.2007)
способ изготовления катализатора и катализатор -  патент 2202414 (20.04.2003)

Класс B01J37/30 ионный обмен

катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
лакунарный гетерополианион структуры кеггина на основе вольфрама для гидрокрекинга -  патент 2509729 (20.03.2014)
разработка технологии производства катализаторов алкилирования -  патент 2505357 (27.01.2014)
способ модификации электрохимических катализаторов на углеродном носителе -  патент 2495158 (10.10.2013)
катализатор, способ его получения и способ трансалкилирования бензола диэтилбензолами с его использованием -  патент 2478429 (10.04.2013)
микросферический катализатор для крекинга нефтяных фракций и способ его приготовления -  патент 2473385 (27.01.2013)
микросферический бицеолитный катализатор для повышения октанового числа бензина крекинга вакуумного газойля и способ его приготовления -  патент 2473384 (27.01.2013)
микросферический катализатор для снижения содержания серы в бензине крекинга и способ его приготовления -  патент 2472586 (20.01.2013)
катализатор тримеризации этилена в 1-гексен, лиганд для получения катализатора, способ получения катализатора и способ получения лиганда -  патент 2470707 (27.12.2012)
способ получения титанатного фотокатализатора, активного в видимой области спектра -  патент 2466791 (20.11.2012)

Класс C07C47/052 получение окислением метанола

способ получения катализатора окисления метанола до формальдегида -  патент 2458738 (20.08.2012)
способ получения карбамидоформальдегидного концентрата -  патент 2418008 (10.05.2011)
корковый катализатор, предназначенный, в частности, для окисления метанола в формальдегид, и способ его изготовления -  патент 2393014 (27.06.2010)
способ получения катализатора окисления метанола до формальдегида -  патент 2388536 (10.05.2010)
катализатор для окисления метанола до формальдегида -  патент 2384365 (20.03.2010)
способ получения формальдегида -  патент 2267479 (10.01.2006)
способ получения формальдегида -  патент 2223939 (20.02.2004)
способ и реактор для гетерогенного экзотермического синтеза формальдегида -  патент 2156160 (20.09.2000)
способ и реактор для гетерогенного экзотермического синтеза формальдегида -  патент 2150995 (20.06.2000)
способ получения формальдегида -  патент 2114097 (27.06.1998)
Наверх