катализатор для окисления метанола до формальдегида

Классы МПК:B01J23/881 и железом
B01J23/10 редкоземельных элементов
B01J37/04 смешивание
C07C47/052 получение окислением метанола
Автор(ы):, ,
Патентообладатель(и):ЗЮД-КЕМИ КАТАЛИСТС ИТАЛИЯ С.Р.Л. (IT)
Приоритеты:
подача заявки:
2005-12-21
публикация патента:

Изобретение относится к катализатору для окисления метанола до формальдегида, к способу получения катализатора и к его использованию в способах получения формальдегида. Описан катализатор для окисления метанола до формальдегида, содержащий каталитические смеси Fе2(МоO4)3 /МоО3, в которых атомное отношение Mo/Fe находится в пределах от 1,5 до 5, и соединение церия, молибдена и кислорода в количестве от 0,1 до 10 мас.% по отношению к чистому церию. Описан многослойный каталитический слой, который формируется с помощью описанного выше катализатора. Описан способ получения катализатора, включающий стадии а) смешивания суспензии, полученной путем осаждения смеси Fe2(МоO4)3 /МоО3, в которой атомное отношение Mo/Fe составляет от 1,5 до 5, из раствора растворимой соли железа (III), смешанного с раствором молибдата щелочного металла или аммония, с водной суспензией, полученной посредством взаимодействия, в горячем состоянии, триоксида молибдена и карбоната трехвалентного церия при атомном отношении Мо/Се от 1,5 1 до 2,1 до тех пор, пока генерирование СО2 не прекратится, в) разбавления, осаждения, фильтрования и промывки осадка, преобразуемого после этого в суспензию путем перемешивания, перед смешиванием с суспензией продукта взаимодействия триоксида молибдена с карбонатом церия, с) формирования высушенной смеси или ее пасты в форме гранул и d) кальцинирования их при температуре от 450 до 600°С. Описан способ окисления метанола с использованием описанного выше катализатора. Технический эффект - повышение стабильности каталитического слоя. 4 н. и 11 з.п. ф-лы, 3 табл.

Формула изобретения

1. Катализатор для окисления метанола до формальдегида, содержащий каталитические смеси Fе2(МоO4)3 /МоО3, в которых атомное отношение Mo/Fe находится в пределах от 1,5 до 5, а соединение церия, молибдена и кислорода, в количестве от 0,1 до 10 мас.%, по отношению к чистому церию.

2. Катализатор по п.1, в которых соединение молибдена церия и кислорода присутствует в количестве от 0,2 до 5 мас.%, по отношению к чистому церию.

3. Катализатор по пп.1 и 2, в которых каталитическая смесь имеет композицию Fе2(МоO 4)32МоО3.

4. Катализатор по п.1, в которых церий находится в форме трех- и/или четырехвалентного церия.

5. Катализатор по п.1, имеющие площадь поверхности от 1 до 7 м2/г.

6. Катализатор по п.5, в которых площадь поверхности равна 2-6 м2/г.

7. Катализатор по п.5, в которых площадь поверхности равна 3-5 м2 /г.

8. Катализатор по п.1 в форме цилиндрических гранул, снабженных сквозным отверстием или цилиндрических гранул с трехгранным поперечным сечением, снабженных сквозным отверстием на гранях и с осями отверстий, которые параллельны оси гранулы.

9. Гранулы по п.8, в которых гранулы имеют высоту от 2 до 7 мм.

10. Многослойный каталитический слой, в котором слой, вступающий в контакт со смесью свежих газообразных реагентов, формируется с помощью катализатора по любому из пп.1-4, имеющего площадь поверхности от 3 до 6 м2/г.

11. Способ получения катализатора, имеющего характеристики, приведенные в любом из пп.1-9, включающий в себя стадии а) смешивания суспензии, полученной путем осаждения смеси Fе2(МоO4)3 /МоО3, в которой атомное отношение Mo/Fe составляет от 1,5 до 5, из раствора растворимой соли железа (III), смешанного с раствором молибдата щелочного металла или аммония с водной суспензией, полученной посредством взаимодействия в горячем состоянии триоксида молибдена и карбоната трехвалентного церия при атомном отношении Мо/Се от 1,5 до 2,1 до тех пор, пока генерирование СО2 не прекратится, b) разбавления, осаждения, фильтрования и промывки осадка, преобразуемого после этого в суспензию путем перемешивания, перед смешиванием с суспензией продукта взаимодействия триоксида молибдена с карбонатом церия, с) формования высушенной смеси или ее пасты в форме гранул и d) кальцинирования гранул при температуре от 450 до 600°С.

12. Способ по п.11, в котором кальцинирование осуществляют при температуре от 480 до 580°С.

13. Способ окисления метанола до формальдегида, в котором газообразная смесь метанола при концентрации от 6 до 10 об.% и кислорода при концентрации от 9 до 13 об.%, остаток представляет собой инертный газ, вводится в трубчатый реактор параллельного типа, в котором катализатор внутри труб представляет собой катализатор по любому из пп.1-9, с использованием линейных скоростей 1-2 Нм/с, и температуры бани, которая циркулирует снаружи труб, составляют от 250 до 320°С

14. Способ по п.13, в котором слой катализатора, который находится в контакте со свежими взаимодействующими газами, формируется с помощью катализатора по п.10.

15. Способ по любому из пп.13 и 14, в котором взаимодействующие газы вводятся в каталитический слой при температуре от 120 до 160°С.

Описание изобретения к патенту

Настоящее изобретение относится к катализатору для окисления метанола до формальдегида, к способу получения катализатора и к его использованию в способах получения формальдегида.

Катализаторы, промышленно используемые в способах окисления метанола до формальдегида (обычно называемые молибдаты железа, поскольку Fе2(МоO4)3 представляет собой один из главных активных компонентов), содержат как Fе2(МоO4)3, так и триоксид молибдена (МоО3), равномерно распределенные по массе катализатора.

В свежих катализаторах отношение Fe/Mo, как правило, выше чем 1,5 и не выше чем 5; однако оно подвергается изменениям во время окисления из-за потерь МоО 3, которые происходят в основном на входе свежих реагентов в каталитический слой и в областях с локальным повышением температуры (максимальная температура внутри реактора).

Потери МоО3 определяют уменьшение производительности катализатора. Это требует после более или менее продолжительного периода использования замены катализатора, которая представляет собой продолжительную и дорогостоящую операцию.

Потери МоО3 вызывают в дополнение к уменьшению производительности катализатора разрушение каталитического слоя и последующее увеличение потери загрузки.

По этой причине ощущается необходимость в катализаторе, способном обеспечивать постоянную производительность в течение достаточно продолжительных периодов времени.

В настоящее время неожиданно обнаружен катализатор, который удовлетворяет упоминаемым выше требованиям и содержит в дополнение к смесям Fe2(МоO4)3/МоО3 (далее именуемым "основным катализатором"), в котором атомное отношение Mo/Fe выше чем 1,5 и не превосходит 5, также соединение церия, молибдена и кислорода (далее - молибдат церия) в количестве 0,2-10 мас.%, по отношению к чистому церию. Предпочтительно, основной катализатор имеет композицию Fe2(МоO 4)32МоО3, и молибдат церия присутствует в количествах от 0,2 до 5 мас.%, по отношению к чистому церию.

Молибдат церия добавляется как молибдат церия, в котором церий может быть трех- и/или четырехвалентным. Во время активирования катализатора и/или во время использования исходный молибдат церия подвергается преобразованиям.

Рентгеновская дифрактограмма, зарегистрированная на готовом катализаторе в условиях высокого разрешения (с использованием высокого отношения сигнал-шум, 40 кВ медной трубки, 40 микроампер, при CuKкатализатор для окисления метанола до формальдегида, патент № 2384365 =l,540 598E, диапазона угла 2 тэта от 5 до 125, шага 0,01 и времени сбора данных 15 секунд/шаг), показывает, при относительно низких концентрациях церия (3000 м.д.) линии дифракции для постоянных решетки d=8,44E, d=6,69E и d=4,79E, которые не появляются в дифрактограмме катализатора без церия, и при более высоких концентрациях церия (17000 м.д.) линии, которые появляются при более коротких постоянных решетки, и в частности, при расстояниях d=4,7E, d=4,29E, d=3,37E, d=3,04E, и d=2,75E, в то время как линии, наблюдаемые при концентрациях 3000 м.д. сдвинуты к более высоким постоянным решетки, то есть, d=8,53E, d=6,74E и d=4,82E.

Добавление молибдата церия оказывает воздействие значительного понижения температуры в областях с локальным повышением температуры по отношению к катализатору без молибдата церия, таким образом, увеличивая стабильность каталитического слоя, а следовательно, и его время жизни. Другие характеристики катализатора, такие как преобразование метанола и селективность по отношению к формальдегиду, остаются практически неизменными.

Катализатор получают, начиная с водной суспензии, которая содержит основной катализатор, полученный в соответствии с известными способами, такими, например, как осаждение из раствора растворимой соли железа (III) (FеСl 3, Fе(NО3)3 и подобных растворимых солей), смешанного с раствором растворимого молибдата, такого как молибдат щелочного металла и/или аммония (суспензия 1), и из суспензии молибдата церия (суспензия 2), полученной путем взаимодействия, в горячем состоянии, водной смеси триоксида молибдена (МоО3) и карбоната церия с загрузкой церия, 42 мас.%, при молярном отношении Мо/Се от 1,5 до 3, предпочтительно, 1,6-2,1, до тех пор, пока не прекратится генерирование CO2.

В качестве альтернативы, суспензия 2 может быть получена посредством смешивания суспензии молибдата щелочного металла и/или аммония с раствором растворимой соли трехвалентного церия, используя отношение Мо/Се, равное 1,5, и промывая водой полученную суспензию до тех пор, пока не исчезнут нежелательные ионы (NH 4катализатор для окисления метанола до формальдегида, патент № 2384365 +, Na+, и тому подобное).

Молибдат церия также может получаться и добавляться в базовый катализатор в виде молибдата четырехвалентного церия посредством взаимодействия соли церия и молибдата в водном растворе.

Затем суспензии 1 и 2 смешиваются вместе, и конечный продукт сушится посредством сушки распылением с тем, чтобы получить порошок, пригодный для формирования гранул, как правило, в форме цилиндров со сквозным отверстием или цилиндров с трехгранным сечением, снабженных сквозными отверстиями на гранях, которые имеют оси, которые параллельны оси гранулы, или имеющих другие формы. Как правило, гранулы имеют высоту от 2 до 7 мм.

Затем гранулы активируются посредством кальцинирования в окислительной атмосфере (воздуха) при температурах от 450° до 600°С, предпочтительно, от 480 до 580°С.

Как правило, кальцинирование продолжается четыре часа или более.

Готовый катализатор имеет удельную поверхность (БЭТ) 1-7 м 2/т, предпочтительно 3-6 м2/г.

Возможно также, но это не является одним из предпочтительных способов, однородное смешивание порошка молибдата трех- и/или четырехвалентного церия с порошком или суспензией основного катализатора.

Обнаружено, и это представляет собой дополнительный аспект катализаторов в соответствии с настоящим изобретением, что указанные катализаторы, в частности, имеющие удельную поверхность 3-6 м2/г, удобно использовать для формирования слоя в каталитическом слое, в котором достигается локальное повышение температуры, который находится в контакте со свежими реагентами. Использование этого слоя позволяет значительно понизить температуру локальных областей с высокой температурой в каталитическом слое.

Окисление метанола осуществляется в соответствии с известными способами.

Газообразные смеси содержат метанол при концентрациях от 6 до 10% объемных и кислород при концентрациях от 9 до 13% объемных, остаток представляет собой инертный газ (например, азот).

Реактор представляет собой тип трубчатого реактора с параллельными трубами, и тепло реакции удаляется посредством охлаждающей жидкости, которая циркулирует снаружи труб.

Линейная скорость газов составляет от 1 до 2 Нм/сек;

температура бани равна от 250 до 320°С.

Предпочтительно, газовая смесь вводится в реактор при температуре, составляющей от 120 до 160°С.

Следующие далее примеры приводятся для иллюстрации, но не ограничения рамок настоящего изобретения.

Примеры

Опытная установка, используемая для каталитических исследований окисления метанола до формальдегида, состоит из трубчатого реактора, погруженного в баню из расплава соли. Реактор имеет длину 1950 мм и имеет внутренний диаметр 20,4 мм. Катализатор помещается в центральную часть реактора с тем, чтобы обеспечить максимальную изотермичность.

Вводимые газы вводятся через верхнюю часть реактора. Воздух и азот дозируются по массовому потоку, а метанол дозируется посредством насоса с постоянным потоком и сначала направляется в испаритель.

Поток, покидающий реактор, и газы после продувки колонны анализируются посредством газовой хроматографии.

Пример 1

Получение молибдата церия

Реагенты:

418,6 г карбоната церия (Се=42%)

271,0 г триоксида молибдена

В реактор с емкостью приблизительно 10 литров, снабженный эффективным механическим перемешиванием, системой измерения и контроля температуры, трубой для входа и выхода газа, загружают необходимую деминерализованную воду (приблизительно 4 литра) и триоксид молибдена. Осуществляют нагрев при перемешивании до температуры 70°С; добавляют приблизительно в течение 60 минут карбонат церия, и перемешивание и нагрев продолжают приблизительно в течение 5 часов. Формируется плотный и объемный желтый осадок. Количество полученного молибдата церия является достаточным для получения приблизительно 58,6 кг катализатора, содержащего приблизительно 0,3% церия.

Пример 2

Получение молибдата церия

Реагенты:

2,5 кг карбоната церия (Се=42%).

1,62 кг триоксида молибдена

В реактор с емкостью приблизительно 20 литров, снабженный эффективным механическим перемешиванием, системой измерения и контроля температуры, трубой для входа и выхода газа, загружают необходимую деминерализованную воду (приблизительно 12 литров) и триоксид молибдена. Осуществляют нагрев при перемешивании до температуры 70°С; добавляют карбонат церия приблизительно в течение 60 минут, и перемешивание и нагрев продолжают приблизительно в течение 5 часов. Формируется плотный и объемный желтый осадок. Количество полученного молибдата церия является достаточным для получения приблизительно 61 кг катализатора, содержащего приблизительно 0,7% церия.

Сравнительный пример 1

Получение катализатора, который не содержит церия

Реагенты:

23,8 кг триоксида молибдена

40,0 кг натрия молибдата дигидрата

35,2 кг хлорида гексагидрата железа (III)

В контейнер с емкостью приблизительно 2,5 м3, снабженный механической мешалкой, системой измерения и контроля температуры, загружают приблизительно 1 м3 деминерализованной воды, триоксид молибдена и молибдат натрия. Осуществляют нагрев до 60°С до тех пор, пока твердые продукты не растворятся полностью.

Раствор хлорида железа (III), приготовленный отдельно (приблизительно 0,5 м3), добавляют в течение 90 минут, поддерживая температуру реакции постоянной, при 60°С.

После завершения добавления хлорида железа (III) перемешивание продолжают в течение 10 минут, масса доводится до объема 2 м 3 с помощью деминерализованной воды/ перемешивание прекращают и дают возможность для охлаждения до тех пор, пока не будет достигнута комнатная температура.

После осаждения осаждаемого твердого продукта осуществляют перетекание прозрачного жидкого супернатанта, а затем твердый продукт отфильтровывают на тканевом фильтре и промывают деминерализованной водой для устранения хлоридов, которые присутствуют. Полученную лепешку на фильтре выливают в соответствующий танк и преобразуют в суспензию с помощью механического перемешивания.

Затем суспензию вводят в распылительную сушилку для преобразования в сухой порошок. Полученный порошок преобразуют после смазки в гранулы, имеющие форму перфорированного цилиндра. Кальцинирование гранул при 500°С в течение 4 часов приводит к формированию катализатора, используемого при окислении метанола до формальдегида.

Пример 3

Получение катализатора, содержащего церий

Реагенты:

23,8 кг триоксида молибдена

40,0 кг натрия молибдата дигидрата

35,2 кг хлорида гексагидрата железа (III)

В контейнер емкостью приблизительно 2,5 м3, снабженный механической мешалкой и системой измерения и контроля температуры, загружают приблизительно 1,0 м3 деминерализованной воды, триоксид молибдена и молибдат натрия. Осуществляют нагрев до температуры 60°С до тех пор, пока твердые продукты не растворятся полностью.

Раствор хлорида железа (III), приготовленный отдельно (приблизительно 0,5 м3), добавляют в течение периода 90 минут, поддерживая температуру реакции постоянной, при 60°С.

После завершения добавления хлорида железа (III) перемешивание продолжают в течение 10 минут, масса доводится до объема 2 м 3 с помощью деминерализованной воды, перемешивание прекращают и дают возможность для охлаждения до тех пор, пока не будет достигнута комнатная температура.

После осаждения осаждаемого твердого продукта осуществляют перетекание жидкого супернатанта, а затем твердый продукт отфильтровывают на тканевом фильтре и промывают деминерализованной водой для устранения хлоридов, которые присутствуют. Полученную лепешку на фильтре выливают в соответствующий танк и преобразуют в суспензию с помощью механического перемешивания. К полученной суспензии добавляют суспензию молибдата церия, полученную в соответствии с примером 1. После энергичного перемешивания в течение, по меньшей мере, 30 минут, полученная суспензия вводится в распылительную сушилку для получения сухого порошка. Полученный порошок преобразуется после смазки в цилиндрические гранулы, которые имеют трехгранное поперечное сечение и снабжены сквозными отверстиями на гранях. Кальцинирование гранул при 500°С в течение четырех часов приводит к образованию катализатора, содержащего 0,3 мас.% церия (по химическому анализу), в форме молибдата церия.

Пример 4

Получение катализатора, содержащего церий

Реагенты:

23,8 кг триоксида молибдена

40,0 кг натрия молибдата дигидрата

35,2 кг хлорида гексагидрата железа (III)

В контейнер с емкостью приблизительно 2 м3, снабженный механической мешалкой, системой измерения и контроля температуры, загружают приблизительно 1 м3 деминерализованной воды, триоксид молибдена и молибдат натрия. Осуществляют нагрев до 60°С до тех пор, пока не будет достигнуто полное растворение твердых продуктов с последующим образованием димолибдата натрия.

Раствор хлорида железа (III), приготовленный отдельно (приблизительно 0,5 м3), добавляют в течение 90 минут, поддерживая температуру реакции постоянной, при 60°С.

После завершения добавления хлорида железа (III) перемешивание продолжают в течение 10 минут, масса доводится до объема 20 м3 с помощью деминерализованной воды, перемешивание прекращают и дают возможность для охлаждения до тех пор, пока не будет достигнута комнатная температура.

После осаждения осаждаемого твердого продукта осуществляют перетекание прозрачного жидкого супернатанта, а затем твердый продукт отфильтровывают на тканевом фильтре и промывают деминерализованной водой для устранения хлоридов, которые присутствуют. Полученную лепешку на фильтре выливают в соответствующий танк и преобразуют в суспензию с помощью механического перемешивания.

В полученную суспензию добавляют суспензию молибдата церия, полученную в соответствии с примером 2.

Оба продукта однородно смешивают с помощью энергичного перемешивания в течение, по меньшей мере, 30 минут, а затем вводят в распылительную сушилку, которая позволяет получить сухой порошок.

Полученный порошок преобразуют после смазки в трехгранные гранулы типа, полученного в примере 3.

Кальцинирование гранул при 500°С в течение четырех часов приводит к формированию катализатора, который содержит приблизительно 1,56 мас.% церия, (из химического анализа) в форме молибдата церия.

Сравнительный пример 2

Повторяется получение сравнительного примера 1 с той лишь разницей, что вместе с триоксидом молибдена и молибдатом натрия загружают 418,6 кг карбоната церия и соответствующее количество (271 г) триоксида молибдена.

Количество церия, присутствующее в порошке после кальцинирования, составляет только 20% от церия, присутствующего в исходном соединении церия.

Пример 5

Каталитические исследования

Используют каталитический слой, который состоит из двух слоев: верхний слой из 400 мм керамических колец и нижний слой из 700 мм катализатора.

Общая скорость потока газа на входе равна 1765 Ст.л/час. Содержание О2 в смеси на входе равно 9,5%.

Результаты исследования с использованием катализатора сравнительного примера 1 приведены в следующей далее таблице:

Часы работыБаня,°С Метанол на входе, % Конверсия метанола, %Выход формальдегида, %
25 260 6,1197.40 91,14
55 265 6,1098,39 91,79
82 265 7,5398,46 91,48
135 265 9,0098,95 90,25
155 260 6,1296,24 89,36

Катализатор быстро деградирует, когда работает при 9% метанола, и по этой причине для оценки деградирования катализатора исследование прерывают и повторяют при 6% метанола.

Результаты исследования с использованием катализатора примера 3 приведены в следующей далее таблице:

Часы работыБаня, °СМетанол на входе, %Конверсия метанола, %Выход формальдегида, %
49265 6,0198,79 92,60
80 265 7,5098,58 92,26
122 265 7,5198,57 92,30
482 270 9,0898,41 91,85
674 275 10,0698,66 91,82
723280 7,4998,75 92,69

Результаты исследования с использованием катализатора примера 4 в следующей далее таблице:

Часы работыБаня,°С Метанол на входе, % Конверсия метанола, %Выход формальдегида, %
120 270 6,0598,41 93,02
150 270 7,5498,62 93,33
486 270 9,0698,43 92,99
492 275 9,0498,93 93,25
683 275 10,0798,79 92,53
846280 7,5398,11 91,68
876 290 7,5599,16 92,35

Класс B01J23/881 и железом

каталитическая система в процессе термолиза тяжелого нефтяного сырья и отходов добычи и переработки нефти -  патент 2524211 (27.07.2014)
способ активации катализаторов гидроочистки дизельного топлива -  патент 2500475 (10.12.2013)
способ получения катализатора окисления метанола до формальдегида -  патент 2458738 (20.08.2012)
железооксидный катализатор для термолиза тяжелого углеводородного сырья -  патент 2442648 (20.02.2012)
корковый катализатор, предназначенный, в частности, для окисления метанола в формальдегид, и способ его изготовления -  патент 2393014 (27.06.2010)
способ получения катализатора окисления метанола до формальдегида -  патент 2388536 (10.05.2010)
катализатор производства акрилонитрила -  патент 2347612 (27.02.2009)
приготовление катализатора гидроочистки -  патент 2244592 (20.01.2005)
способ приготовления катализатора для гидроочистки нефтяных дистиллятов -  патент 2179886 (27.02.2002)
способ приготовления катализатора паровой конверсии оксида углерода и катализатор паровой конверсии оксида углерода -  патент 2170615 (20.07.2001)

Класс B01J23/10 редкоземельных элементов

способ получения этилена -  патент 2528829 (20.09.2014)
катализатор для получения этилена и способ получения этилена с использованием этого катализатора -  патент 2523013 (20.07.2014)
композиция на основе оксидов циркония, церия и другого редкоземельного элемента при сниженной максимальной температуре восстанавливаемости, способ получения и применение в области катализа -  патент 2518969 (10.06.2014)
катализатор и способ синтеза олефинов из диметилового эфира в его присутствии -  патент 2518091 (10.06.2014)
алкилирование для получения моющих средств с использованием катализатора, подвергнутого обмену с редкоземельным элементом -  патент 2510639 (10.04.2014)
композиция на основе оксида церия и оксида циркония с особой пористостью, способ получения и применение в катализе -  патент 2509725 (20.03.2014)
катализаторы окисления для дизельных двигателей на основе неблагородных металлов и модифицированные неблагородными металлами -  патент 2506996 (20.02.2014)
удерживающие nox материалы и ловушки, устойчивые к термическому старению -  патент 2504431 (20.01.2014)
система снижения токсичности отработавших газов двигателя с использованием катализатора селективного каталитического восстановления -  патент 2497577 (10.11.2013)
способ извлечения церия -  патент 2495147 (10.10.2013)

Класс B01J37/04 смешивание

способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена -  патент 2526981 (27.08.2014)
способ карбонилирования с использованием связанных содержащих серебро и/или медь морденитных катализаторов -  патент 2525916 (20.08.2014)
микросферический катализатор крекинга "октифайн" и способ его приготовления -  патент 2522438 (10.07.2014)
способ получения наноструктурного фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2517188 (27.05.2014)
катализатор на основе меди, нанесенный на мезопористый уголь, способ его получения и применения -  патент 2517108 (27.05.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
способ приготовления катализатора для получения ароматических углеводородов, катализатор, приготовленный по этому способу, и способ получения ароматических углеводородов с использованием полученного катализатора -  патент 2515511 (10.05.2014)
способ приготовления катализатора для окислительной конденсации метана, катализатор, приготовленный по этому способу, и способ окислительной конденсации метана с использованием полученного катализатора -  патент 2515497 (10.05.2014)
способ переработки биомассы в целлюлозу и раствор низкомолекулярных продуктов окисления (варианты) -  патент 2515319 (10.05.2014)
каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга и способ ее приготовления -  патент 2513106 (20.04.2014)

Класс C07C47/052 получение окислением метанола

способ получения катализатора окисления метанола до формальдегида -  патент 2458738 (20.08.2012)
способ получения карбамидоформальдегидного концентрата -  патент 2418008 (10.05.2011)
корковый катализатор, предназначенный, в частности, для окисления метанола в формальдегид, и способ его изготовления -  патент 2393014 (27.06.2010)
способ получения катализатора окисления метанола до формальдегида -  патент 2388536 (10.05.2010)
способ получения формальдегида -  патент 2267479 (10.01.2006)
способ получения формальдегида -  патент 2223939 (20.02.2004)
способ и реактор для гетерогенного экзотермического синтеза формальдегида -  патент 2156160 (20.09.2000)
способ и реактор для гетерогенного экзотермического синтеза формальдегида -  патент 2150995 (20.06.2000)
способ получения формальдегида -  патент 2114097 (27.06.1998)
способ непрерывного получения водных растворов формальдегида -  патент 2112768 (10.06.1998)
Наверх