способ очистки потока отходящего газа и устройство для его осуществления

Классы МПК:B01D53/34 химическая или биологическая очистка отходящих газов
C01B17/60 выделение диоксида серы из газов 
Автор(ы):
Патентообладатель(и):АББ Флэкт Актиеболаг (SE)
Приоритеты:
подача заявки:
1994-03-04
публикация патента:

Изобретение относится к способу очистки отходящего газа, содержащего хлористый водород и сернистый ангидрид, и усстройству для его осуществления. Сущность: способ очистки потока отходящего газа, содержащего хлористый водород и сернистый ангидрид, состоит в том, что поток газа обрабатывают в устройстве для мокрой очистки (5), после этого в него добавляется известь (9) и поток проходит через фильтр (13). Способ и устройство отличаются тем, что часть потока газа обходит байпасом устройство для мокрой очистки (5) по трубопроводу (15) и соединяется с остальным потоком газа перед фильтром (13). Таким образом, хлористый водород из обходного потока реагирует с подаваемой известью, в результате чего образуется хлористый кальций, который активизирует отделение сернистого ангидрида при вводе извести. 2 с. и 8 з.п. ф-лы, 1 ил.
Рисунок 1

Формула изобретения

1. Способ очистки потока отходящего газа, который содержит хлористый водород и сернистый ангидрид, включающий обработку и устройство для мокрой очистки (5), последующее введение извести (9) и отделение в фильтре (13), отличающийся тем, что часть потока отходящего газа пропускают в обход устройства для мокрой очистки (5), а затем соединяют с частью потока газа, которая проходит через устройство для мокрой очистки, перед фильтром (13).

2. Способ по п.1, отличающийся тем, что объем потока отходящего газа, проходящего в обход устройства для мокрой очистки, составляет примерно 1 - 8 об.%.

3. Способ по п.2, отличающийся тем, что объем отходящего газа, проходящего в обход устройства для мокрой очистки, составляет примерно 2 - 5 об.%.

4. Способ по любому из пп.1 - 4, отличающийся тем, что поток отходящего газа, выходящий из устройства для мокрой очистки (5), нагревают до температуры около 80 - 120oС перед тем, как его соединяют с потоком газа, который обходит устройство для мокрой очистки.

5. Способ по любому из пп.1 - 4, отличающийся тем, что известь вводят в поток отходящего газа в виде порошка.

6. Способ по любому из пп.1 - 5, отличающийся тем, что известь, которую вводят в процесс очистки газов, представляет собой гашеную известь (Са(ОН)2), прокаленную известь (СаО) или карбонат кальция (СаСО3).

7. Устройство для очистки потока отходящего газа, который содержит хлористый водород и сернистый ангидрид, включающее входной трубопровод (4), по которому поток газа подают в устройство для мокрой очистки (5), выходной трубопровод (6), по которому поток газа выходит из устройства для мокрой очистки (5), станцию (9) для подачи извести в поток отходящего газа после устройства для мокрой очистки (5) и фильтр (13) для отделения извести, отличающееся тем, что оно включает трубопровод (15), который проходит от входного трубопровода (4) устройства для мокрой очистки (5) до выходного трубопровода (8) устройства для мокрой очистки (5) перед фильтром (13), через который часть потока газа обходит устройство для мокрой очистки (5).

8. Устройство по п.7, отличающееся тем, что трубопровод (15), по которому часть потока обходит устройство для мокрой очистки, снабжен устройствами (16) для регулирования газового потока.

9. Устройство по п.7 или 8, отличающееся тем, что устройства (16) для регулирования потока газа управляют им в зависимости от потока газа во входном трубопроводе (4) и/или содержания хлористого водорода в газе во входном трубопроводе (4).

10. Устройство по любому из пп.7 - 9, отличающееся тем, что выходной трубопровод (6) устройства для мокрой очистки (5) снабжен устройствами для подогрева.

Описание изобретения к патенту

Изобретение относится к способу очистки потока отходящего газа, содержащего хлористый водород и сернистый ангидрид, и устройству для его осуществления.

В настоящее время резко возрастают расходы на очистку отходящих газов, поскольку эта очистка включает не только отделение пыли, например, золы-уноса при помощи устройств типа электрофильтров, но также отделение газообразных загрязнений типа сернистого ангидрида и хлористого водорода, которые содержатся в потоке газа, образующегося, например, при сжигании мусора. Сернистый ангидрид может быть отделен, например, путем мокрой очистки в скруббере, где поток газа контактирует с водным раствором щелочи, который абсорбирует сернистый ангидрид. Хлористый водород отделяется очисткой в мокром скруббере, где поток газа контактирует с водным раствором, который абсорбирует хлористый водород. Отделение хлористого водорода и сернистого ангидрида обычно проводится в комбинированном устройстве для мокрой очистки, в этом случае хлористый водород абсорбируется на первой стадии, а сернистый ангидрид - на второй. Поток газов, выходящий из такого комбинированного устройства для мокрой очистки, практически не содержит твердых частиц, хлористого водорода и сернистого ангидрида и, таким образом, может считаться достаточно чистым для выброса в атмосферу. Поскольку требования к состоянию окружающей среды повышаются, загрязнениями, которые нужно удалять, считаются также окислы азота (NOX), и поэтому поток газов должен быть подвергнут дальнейшей очистке, причем в максимальной степени должны быть удалены частицы тяжелых металлов и сернистый ангидрид. Таким образом, при каталитическом удалении окислов азота из потока газов считается целесообразным, чтобы содержание сернистого ангидрида в потоке газов не превышало 5 мг и трехокиси серы 0,1 на нм3.

Для того, чтобы произвести дополнительную очистку потока отходящих газов после обычной мокрой очистки, в поток газа вводится известь, причем целесообразно вводить ее в сочетании с активированным углем. Для того, чтобы оставшиеся загрязнения также подверглись реакции, образующиеся продукты реакции собираются в фильтре. Известь вводится в поток газа в виде порошка, но может быть введена также в виде шлама. Окончательное разделение шлама на известь и воду происходит при введении его в поток газа, при этом вода при контакте с потоком горячего газа испаряется. Остающиеся частицы извести вступают в реакцию с загрязнениями потока газа, в основном с сернистым ангидридом, и затем собираются в фильтре. Для этого используют мешочные фильтры, которые состоят из фильтровальных мешков, изготовленных из текстильных материалов, установленных в фильтровальной камере. Вводимая известь обычно совместно с активированным углем собирается в фильтровальных мешках, а поток очищенного газа выходит из мешочного фильтра. Содержащий известь остаток в мешочном фильтре вступает в реакцию с загрязнениями, оставшимися в потоке газа типа сернистого ангидрида, перед тем как этот остаток удаляется через определенные промежутки времени из фильтровальных мешков и собирается на дне фильтровальной камеры для последующей выгрузки в мусор.

Примером описанного выше технологического процесса может служить приведенная в "Warner Bulletin", февраль 1, 1993, модернизированная установка для сжигания мусора - загрязнения ниже уровня обнаружения.

Далее известно, например, из статьи Ханса Т.Карлссона, Ионаса Клингспора, Мариты Линне и Ингемара Бьерля "Активированный процесс мокрой и сухой очистки от SO2", опубликованной в журнале Ассоциации контроля загрязнений воздушной среды,

т. 33, N1, январь 1983 г., с. 23-28, что отделение сернистого ангидрида при помощи извести в фильтре, как было описано выше, значительно активизируется в присутствии хлорида кальция (CaCl2). Если хлорид кальция отсутствует, поток газа должен контактировать с большим количеством извести, т.е. в процессе должно быть использовано ее гораздо больше, что связано с удорожанием процесса. Естественно, увеличение расхода извести также повышает продолжительность выгрузки из мешочных фильтров, что является большим недостатком. Для того, чтобы уменьшить расход извести и продолжительность выгрузки, целесообразно, чтобы отделение сернистого ангидрида при помощи извести в фильтре происходило в присутствии хлорида кальция.

Целью изобретения является устранение указанного недостатка путем отделения сернистого ангидрида от потока газа с помощью извести после устройства для мокрой очистки в присутствии хлорида кальция.

Для достижения этой цели часть потока газа, содержащего хлористый водород, обходит байпасом устройство для мокрой очистки, в котором отделяется от потока хлористый водород, а затем оба потока соединяются после устройства для мокрой очистки перед фильтром для извести.

Дополнительные характеристики изобретения приведены в последующих пунктах заявки.

Необходимо отметить, что в патенте США N 2078702 описан процесс очистки потока газа путем струйной абсорбционной сушки, который включает введение в процесс извести, а также последующую фильтрацию в фильтрационной камере, причем часть потока газа обходит стадию струйной абсорбционной сушки, а затем поступает вместе с частью потока газа, прошедшего стадию струйной абсорбционной сушки, в специальную секцию фильтровальной камеры. Остальная часть потока газа, которая прошла стадию струйной абсорбционной сушки, проходит через другую часть фильтровальной камеры и оба потока соединяются после фильтровальной камеры. Целью такого байпаса является повторный подогрев потока газов.

На чертеже схематически показано оборудование в соответствии с изобретением.

Поток газов, который содержит хлористый водород и сернистый ангидрид, образуется в печи 1, например, при сжигании мусора. По трубопроводу 2 поток газов поступает в сепаратор пыли 3, например электрофильтр, в котором происходит отделение частиц твердого материала типа золы-уноса. Затем поток газа поступает по трубопроводу 4 в устройство для мокрой очистки 5 для отделения хлористого водорода, а также основной части сернистого ангидрида. Очищенный таким образом поток газов выходит из устройства для мокрой очистки через выходной трубопровод 6. Поток выходящего газа обычно имеет относительно низкую температуру, например 50-80oC и для того, чтобы избежать коррозии установленного далее оборудования предусмотрены устройства для подогрева 7 типа теплообменников, которые обеспечивают подогрев температуры выходящих газов до 80-120oC.

После мокрой очистки и подогрева поток газов проходит по трубопроводу 8 на станцию 9, где происходит ввод извести. В данном случае термин "известь" включает известняк (CaCO3), а также обожженную известь (CaO) и гашеную известь (Ca(OH2). По трубопроводу 11 известь подается на станцию 9 из питателя 10.

Целесообразно согласовать подачу извести с подачей активированного угля, который подается питателем 12.

Как было указано выше, известь подается в поток газа в форме порошка или, если это требуется, в виде водного шлама. В этом случае содержание воды в шламе, определяемое температурой потока газа, должно быть таким, чтобы вода отделялась от шлама при его вводе и испарялась, а частицы твердого вещества уносились потоком газа и собирались в мешке мешочного фильтра 13. Частицы извести и другие твердые частицы отделяются в мешочном фильтре 13, а поток газа выходит по трубопроводу 14.

Для того, чтобы повысить эффективность отделения сернистого ангидрида при вводе извести реакция между сернистым ангидридом и известью должна, как было указано выше, проходить в присутствии хлорида кальция. С этой целью часть потока газа подается по трубопроводу 15 от входного трубопровода 4 устройства для мокрой очистки, проходит устройство для мокрой очистки и удаляется через выходной трубопровод 8 устройства для мокрой очистки к участку перед фильтром 13, ввод извести происходит перед станцией 9, как показано на чертеже.

Поскольку часть потока газа обходит устройство для мокрой очистки 5, в этом потоке не отделяется хлористый водород, как это происходит в устройстве для мокрой очистки. В результате этого хлористый водород, который присутствует в обводном потоке газа, реагирует с вводимой известью, при этом образуется хлорид кальция, который повышает эффективность отделения сернистого ангидрида. Для того, чтобы получить этот эффект, достаточно направить в обход небольшую часть потока газа - около 1-8% от общего объема, еще больший эффект получается при 2-5% объема. Для того, чтобы получить надлежащее соотношение обводного потока газа и потока, который проходит через устройство для мокрой очистки 5, в трубопровод 15 встроены регулирующие устройства 16. Регулирующие устройства 16 управляют потоком газа, который проходит по байпасу (обводному трубопроводу) в соответствии с расходом газа через входной трубопровод 4 и/или содержанием хлористого водорода в потоке газа, входящем в трубопровод 4.

Как описано выше и показано на чертеже, обводной поток газа (байпас) 15 соединяется с основным потоком, прошедшим через устройство для мокрой очистки 5 перед станцией 9, в которой осуществляется ввод извести. Однако обводной поток газа 15 может быть соединен с основным потоком газа, который прошел через устройство для мокрой очистки 5 альтернативно - после станции 9 для ввода извести. При этом необходимо предусмотреть, чтобы два потока объединялись перед фильтром 13.

Показано несколько примеров для иллюстрации изобретения. Устройства, используемые в этих примерах, аналогичного типа, что и описанные выше.

Пример 1. При сжигании домашнего мусора образуется поток газов, в котором содержится 900способ очистки потока отходящего газа и устройство для его   осуществления, патент № 2108139300 мг HCl и 250способ очистки потока отходящего газа и устройство для его   осуществления, патент № 2108139150 мг SO2 на 1 нм3. Поток газов, прошедший мокрый скруббер, содержит менее 5 мг HCl и менее 250 мг SO2 на 1 нм3. Около 5% объема общего количества газа проходит по обводному трубопроводу мимо мокрого скруббера и соединяется с потоком газа, выходящим из мокрого скруббера перед станцией ввода извести.

Поток газов, поступающий на станцию для ввода извести, содержит около 50 мг HCl и приблизительно 250 мг SO2 на 1 м3. Известь вводится в количестве, в пять раз превышающем стехиометрическое отношение. После ввода извести поток газов направляется в мешочный фильтр, после которого в потоке газов, содержится менее 2,5 мг HCl и менее 25 мг SO2 на нм3. Это обозначает эффективность 95% отделения HCl и 90% эффективности отделения SO2. Содержание хлора в пыли, собираемой в мешочном фильтре, около 2 - 3%.

Пример 2. Аналогичный поток газа, как и в примере 1, вводится через мокрый скруббер, в котором отделялось не только HCl, но и SO2. После мокрного скруббера в потоке газа содержалось менее 5 мг HCl и менее 50 мг SO2. Около 2% потока газа направлялось в обход мокрого скруббера и соединялось с потоком газа после мокрого скруббера перед станцией ввода извести. В потоке газов, вводимом на станцию для подачи извести, в этом случае содержалось около 20 мг HCl и около 50 мг SO2 на нм3. Известь вводилась в количестве, в десять ряд превышающем стехиометрическое отношение. После ввода извести поток газа направлялся в мешочный фильтр для отделения извести и любых других твердых включений. Анализы потока газа, выходящего из мешочного фильтра, для определения содержания в нем HCl и SO2 показали, что содержание HCl составляет менее 1 мг, а содержание SO2 - менее 5 мг на нм3, что обозначает эффективность более 90% при отделении SO2. Содержание хлора в пыли, собранной в мешочном фильтре, составляло около 2%.

Класс B01D53/34 химическая или биологическая очистка отходящих газов

способ газификации органических отходов и устройство для его осуществления -  патент 2524909 (10.08.2014)
способ очистки потока газообразных продуктов сгорания из установки для получения клинкера и соответствующее устройство -  патент 2514066 (27.04.2014)
способ выделения метана из газовых смесей -  патент 2500661 (10.12.2013)
поглотитель газов и неприятных запахов (варианты) и органоминеральное удобрение -  патент 2493905 (27.09.2013)
способ очистки отходящих газов -  патент 2488431 (27.07.2013)
система для распыления сорбента в среде дымовых газов теплотехнических установок -  патент 2484903 (20.06.2013)
комплексная, безотходная переработка токсичных отходов -  патент 2484868 (20.06.2013)
улучшенная промотором система на основе охлажденного аммиака и способ удаления co2 из потока дымового газа -  патент 2481882 (20.05.2013)
способ получения сорбента для улавливания летучих форм радиоактивного йода -  патент 2479347 (20.04.2013)
очистка газов -  патент 2477643 (20.03.2013)

Класс C01B17/60 выделение диоксида серы из газов 

Наверх