способ получения карбида титана

Классы МПК:C01B31/30 карбиды 
C22B5/04 алюминием, другими металлами или кремнием 
C22B34/12 получение титана
Автор(ы):
Патентообладатель(и):Санкт-Петербургский государственный горный институт им.Г.В.Плеханова (Технический университет)
Приоритеты:
подача заявки:
1996-06-04
публикация патента:

Изобретение относится к металлургии тугоплавких соединений, а именно к способу получения карбида титана, включающему восстановление смеси тетрахлоридов титана и углерода. При этом восстановление ведут магнием и в реактор подают смесь хлоридов титана и углерода, охлажденную до (-5) - (-20)oС. Техническим результатом является получение гомогенного карбида титана с максимальным содержанием связанного углерода. 1 табл.
Рисунок 1

Формула изобретения

Способ получения карбида титана, включающий восстановление смеси тетрахлоридов титана и углерода, отличающийся тем, что восстановление ведут магнием, при этом в реактор подают смесь хлоридов титана и углерода, охлажденную до (-5) - (-20)oC.

Описание изобретения к патенту

Изобретение относится к металлургии тугоплавких соединений, редких и переходных металлов, в частности к металлургии титана.

Известны способы получения тугоплавких соединений путем восстановления двуокиси титана углеродом (Кипарисов С. В. , Левинский Ю.В., Петров А.П. Карбид титана. М., Металлургия, 1989).

Согласно прототипу процесс получения карбида титана осуществляют в плазме при высоких температурах, в состав реакционной смеси входят хлориды титана и углерода, а также водород (Кипарисов С.В., Левинский Ю.В., Петров А.П. Карбид титана. М., Металлургия, 1989. С. 7).

Недостатком способа является то обстоятельство, что при подаче смеси хлоридов в плазмохимический реактор, нагретый до высокой температуры, четыреххлористый углерод разлагается на хлор и сажистый углерод. В зону реакции поступает смесь, обедненная тетрахлоридом углерода, и в результате магниетермического восстановления образуется нестехиометрический карбид титана. Сажистый углерод, который образуется в результате диспропорционирования четыреххлористого титана, теряет свою активность и не вступает в реакцию и выводится из реакционного пространства. В конечном итоге получается карбид титана с пониженным содержанием связанного углерода.

Цель предлагаемого изобретения заключается в получении гомогенного карбида титана с максимальным содержанием связанного углерода.

Задача решается путем магниетермического восстановления смеси хлоридов титана и углерода, охлажденных до (-5) - (-20)oC.

Сущность предлагаемого способа заключается в следующем: при совместном магниетермическом восстановлении хлоридов титана и углерода образуются исходные компоненты, поверхность которых "атомно чиста", свободна от примесей и характеризуется повышенной реакционной способностью. Вследствие незначительного расстояния между молекулами исходной смеси TiCl4 и CCl4 процесс образования карбида титана протекает энергично на атомарном уровне. Подача жидкой смеси при низкой температуре (-5 - (-20)oC) исключает диспропорционирование тетрахлорида углерода. Это обуславливает присутствие исходных реагентов в зоне реакции в заданном соотношении, что позволяет получать карбид титана стехиометрического состава с максимальной концентрацией связанного углерода и исключает наличие свободного углерода.

Выбор параметров процесса обусловлен следующим: в случае подачи исходной смеси хлоридов при температуре выше -5oC тетрахлорид углерода будет диспропорционировать до вступления в контакт с металлическим магнием, образующийся сажистый углерод выводится из зоны реакции, кроме того, он пассивируется; в конечном итоге получается карбид нестехиометрического состава, содержащий повышенное количество свободного углерода. При подаче смеси хлоридов при температуре ниже - 20oC будут лишние энергозатраты на охлаждение исходной смеси, кроме того, возможна кристаллизация отдельных компонентов, что приведет к получению неоднородного материала с повышенным содержанием свободного углерода.

Пример. Лабораторная установка состояла из шахтной электрической печи, герметичного реактора и стакана, а также конденсатора (для вакуумной сепарации реакционной массы). Смесь хлоридов титана и углерода помещалась в специальный термостат, где она охлаждалась до (-5) - (-20)oC при постоянном перемешивании магнитной мешалкой. Исходный магний загружали в стакан, монтировали аппарат восстановления. Разогревали реактор и осуществляли подачу смеси хлоридов титана и углерода. Температуру процесса поддерживали в пределах 800-900oC. Коэффициент использования магния 35-50%. По окончании подачи хлоридов производили выдержку и охлаждали реактор. После установки конденсатора осуществляли вакуумную сепарацию при температуре 960-980oC. Полученные продукты охлаждали, аппарат демонтировали. Карбид титана измельчали и анализировали. Результаты приведены в таблице.

Полученные данные позволяют сделать вывод о техническом эффекте изобретения - при подаче охлажденной смеси хлоридов титана и углерода получается карбид с высоким содержанием связанного углерода, однородный по составу.

Класс C01B31/30 карбиды 

карбидная нанопленка или нанонить и способ их получения -  патент 2513555 (20.04.2014)
способ получения карбида титана -  патент 2495826 (20.10.2013)
способ получения покрытых аморфным углеродом наночастиц и способ получения карбида переходного металла в форме нанокристаллитов -  патент 2485052 (20.06.2013)
способ получения железоуглеродных наночастиц -  патент 2465008 (27.10.2012)
способ получения нанопорошков систем элемент-углерод -  патент 2434807 (27.11.2011)
способ производства карбида переходного металла и/или сложного карбида переходного металла -  патент 2417949 (10.05.2011)
способ получения высокодисперсных тугоплавких карбидов для покрытий и композитов на их основе -  патент 2333888 (20.09.2008)
способ получения карбида хрома -  патент 2298526 (10.05.2007)
способ получения диоксида титана и карбида кремния из отходов абразивной обработки -  патент 2281912 (20.08.2006)
способ восстановления оксида марганца -  патент 2247071 (27.02.2005)

Класс C22B5/04 алюминием, другими металлами или кремнием 

способ футерования реторт для получения металлов и сплавов металлотермической восстановительной плавкой -  патент 2524408 (27.07.2014)
шихта и способ алюминотермического получения ферромолибдена с ее использованием -  патент 2506338 (10.02.2014)
способ переработки сульфидных медно-никелевых материалов, содержащих металлы платиновой группы -  патент 2501867 (20.12.2013)
шихта и способ алюминотермического получения хрома металлического с ее использованием -  патент 2495945 (20.10.2013)
способ получения чистого ниобия -  патент 2490347 (20.08.2013)
способ силикотермического производства магния -  патент 2488639 (27.07.2013)
способ получения титаноалюминиевого сплава из оксидного титансодержащего материала -  патент 2485194 (20.06.2013)
способ переработки медьсодержащих шламов гальванических производств -  патент 2484156 (10.06.2013)
способ переработки шлифотходов от производства постоянных магнитов -  патент 2469116 (10.12.2012)
способ получения губчатого титана -  патент 2466198 (10.11.2012)

Класс C22B34/12 получение титана

способ получения металлического титана и устройство для его осуществления -  патент 2528941 (20.09.2014)
обогащенный титаном остаток ильменита, его применение и способ получения титанового пигмента -  патент 2518860 (10.06.2014)
обработка титановых руд -  патент 2518839 (10.06.2014)
способ переработки титановых шлаков -  патент 2518042 (10.06.2014)
способ обработки смеси оксидов ниобия и/или тантала и титана -  патент 2507281 (20.02.2014)
способ вскрытия перовскитового концентрата -  патент 2507278 (20.02.2014)
электролизер для насыщения расплава cacl2 кальцием -  патент 2504591 (20.01.2014)
способ переработки отходов, образующихся при очистке газов рудно-термической печи -  патент 2491360 (27.08.2013)
способ переработки аризонитовых и ильменитовых концентратов -  патент 2490346 (20.08.2013)
способ получения титаноалюминиевого сплава из оксидного титансодержащего материала -  патент 2485194 (20.06.2013)
Наверх