способ определения напряжения плоских зон полупроводника в мдп-структурах

Классы МПК:H01L21/66 испытания или измерения в процессе изготовления или обработки
Автор(ы):
Патентообладатель(и):Санкт-Петербургский государственный технический университет
Приоритеты:
подача заявки:
1997-08-07
публикация патента:

Изобретение относится к измерению и контролю электрофизических параметров полупроводников и может быть использовано для оценки качества технологического процесса при производстве твердотельных микросхем и приборов на основе МДП-структур. Способ заключается в том, что на МДП-структуру подают напряжение смещения Uсм и обедняющие импульсы напряжения U1 и U2 способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999 2U1, совмещают по времени импульсы U1 и U2 и из разности их амплитуд получают третий импульс U3, измеряют на них интегральные емкости C1, C2 и C3 соответственно, а напряжение плоских зон МДП-структур определяют по Uсм при выполнении условия: 1/С1 + 1/C2 = 1/С3. Технический результат, обеспечиваемый изобретением, - получение возможности просто при непосредственной регистрации Uсм = UFB, без сложных расчетов определять UFB с высокой точностью (до 1,0%) в широком диапазоне концентраций легирующей примеси в полупроводнике (N ~ 1011 - 1018 см-3), толщин диэлектрика МДП-структуры (d ~ 0,01 - 1 мкм), плотности поверхностных состояний на границе раздела диэлектрик - полупроводник (N ~ 1011 эВ-1 см-2). Способ может быть выполнен на стандартной радиоизмерительной аппаратуре. Измерение емкости области пространственного заряда полупроводника в режиме плоских зон дает возможность по известному соотношению определить уровень легирования полупроводника. 2 ил., 2 табл.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

Способ определения напряжения плоских зон полупроводника в МДП-структурах, включающий подачу и регулирование постоянного напряжения смещения, подачу на структуру обедняющего импульса напряжения, называемого первым, и измерение на нем интегральной емкости области пространственного заряда полупроводника, отличающийся тем, что на МДП-структуру дополнительно подают второй обедняющий импульс напряжения с амплитудой, равной или большей удвоенной амплитуды первого обедняющего импульса, совмещают во времени первый и второй обедняющие импульсы, дополнительно измеряют интегральные емкости на втором обедняющем импульсе и на разности первого и второго обедняющих импульсов, называемой третьим импульсом, а напряжение плоских зон МДП-структуры определяют по напряжению смещения при выполнении условия

1/С1 + 1/С2 = 1/С3,

где С1 - интегральная емкость на первом импульсе;

С2 - интегральная емкость на втором импульсе;

С3 - интегральная емкость на третьем импульсе.

Описание изобретения к патенту

Изобретение относится к области измерения и контроля электрофизических параметров полупроводников и может быть использовано для оценки качества технологического процесса при производстве твердотельных микросхем и приборов на основе МДП-структур.

Напряжение плоских зон UFB является одним из основных и широко используемых параметров МДП-структур, величина которого определяется суммарной плотностью зарядов (Qф) в диэлектрике и на границе раздела диэлектрик-полупроводник. В свою очередь величина Qф полностью определяется физическими свойствами диэлектрика и полупроводника и особенностями технологического процесса изготовления приборов.

В настоящее время для исследований свойств МДП-структур и, в частности, для определения UFB, широко используется метод вольтфарадных характеристик (ВФХ) [1]. Однако в этом случае для определения UFB необходимо сопоставление теоретических (расчетных) и экспериментальных ВФХ, что, во-первых, не обеспечивает экспрессности измерений, и, во вторых, не всегда возможно, так как для экспериментальных МДП-структур в ряде случаев не выполняются условия, необходимые для расчета теоретических ВФХ (например, наличие утечек в диэлектрике и большая плотность поверхностных состояний и ловушек на границе диэлектрик-полупроводник не позволяет с достаточной точностью вычислять концентрацию легирующей примести в полупроводнике и завышает величину емкости структуры в режиме плоских зон).

Известен способ определения UFB при освещении МДП-структуры импульсами света из области собственного поглощения полупроводника [2]. Сущность способа заключается в подаче и регистрации на МДП-структуре такого напряжения смещения Uсм, при котором сигнал фото-эдс при освещении МДП-структуры принимает минимальное значение.

Недостатками данного способа являются:

необходимость специальной оптической системы и источника света определенной длины волны излучения;

невозможность определения UFB для непрозрачных для света МДП-структур (образцы с непрозрачными электродами в закрытых корпусах);

искажение минимального сигнала фото-эдс за счет перезарядки поверхностных состояний (ПС) светом - это затрудняет определение UFB, особенно при концентрации ПС больших

N ~ 1011 эВ-1 см-2

За прототип выбран способ определения UFB, описанный в [3].

Для определения напряжения плоских зон используется простая мостовая схема измерения емкости, которая балансируется одновременно по двум сигналам - малому высокочастотному тестовому сигналу и большому сигналу обедняющего импульса U1 при подаче на структуру постоянного напряжения смещения Uсм, величина которого может изменяться. При этом определяется соответственно дифференциальная (Cn) и интегральная (C1) емкости МДП-структуры.

В режиме плоских зон, как показывают расчеты, должно выполняться соотношение:

C1 = 2Cn. Напряжение смещения, при котором выполняется это соотношение, и будет являться напряжением UFB.

Недостатком данного способа является необходимость измерения в нем дифференциальной емкости, которую измеряют на малом тестовом сигнале амплитудой порядка KT/q (30-50 мВ),

где K - постоянная Больцмана, T - температура МДП-стурктуры, q - заряд электрона). Это накладывает высокие требования к чувствительности применяемой измерительной техники. Кроме того, можно показать, что чувствительность дифференциальной и интегральной емкости по отношению к отклонению МДП-структуры от режима UFB различная. Так, например, при обедняющих импульсах напряжения, создающих изгиб зон

способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999S способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999 80 KT/q(~2,0 B)

и при отклонении начального изгиба зон способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999 от состояния плоских зон на 2 KT/q (~50 мВ) C1 и Cn изменяются на 14,5% и 1,3% соответственно. При одном и том же Uсм способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999 UFB (вблизи способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999S = 0) дифференциальная емкость изменяется в десять раз меньше, чем соответствующая интегральная. Это, в конечном счете, приводит к значительному уменьшению точности определения UFB (~10%), особенно для структур с высокой плотностью поверхностных состояний, которые делают вклад в измеряемую дифференциальную емкость.

В таблице 1 и 2 приведены величины относительного изменения (в процентах) интегральной и дифференциальной емкости. Расчеты сделаны для фиксированных начальных отклонений плоских зон: Uсм = UFB на величину

способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999 для обедняющих импульсов напряжения, создающих изгиб зон в полупроводнике способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999S = (40, 80, 120, 160, 200) KT/q.

Технический результат, обеспечиваемый изобретением, увеличение точности определения UFB в широком диапазоне значений концентрации легирующей примеси в полупроводнике (N ~ 1011 - 1018 см-3) и при высокой плотности поверхностных состояний на границе раздела диэлектрик-полупроводник.

Nss способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999 1011 эВ-1 см-2

Этот результат достигается тем, что в известном способе на МДП-структуру подают дополнительно второй обедняющий импульс напряжения с амплитудой U2 способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999 2U1, совмещают во времени первый и второй импульсы, а из разности их амплитуд получают третий импульс U3, измеряют интегральные емкости C2 и C3 соответственно, и напряжение UFB МДП-структуры определяют по напряжению смещения Uсм при выполнении условия:

1/C1 + 1/C2 = 1/C3

Покажем, что условие (1) выполняется только в режиме плоских зон, т.е. при Uсм = UFB.

Интегральная емкость C, соответствующая приложению к структуре обедняющего импульса напряжения достаточно большой амплитуды (U >> KT/q), может быть определена как отношение приращения заряда Q ( способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999S ) ОПЗ полупроводника к соответствующему приращению поверхностного изгиба зон способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999S , т.е.

способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999

Используя известные соотношения для дифференциальной емкости Cn и заряда ОПЗ Q, имеем:

Cn = (qNспособ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999n/2способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999S)1/2 (3)

Cn = способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999n/W Q = qNW (4)

И учитывая, что в точке плоских зон C = 2Cn получаем:

способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999

Тогда выражение (1) можно переписать в виде:

способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999

т.к. Q2 = способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999 Q1 = способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999

Таким образом, выражение (1) доказано.

Для оценки чувствительности способа по сравнению с прототипом воспользуемся для интегральной емкости C" и дифференциальной емкости C"n при начальных изгибах зон способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999 , от которых подаются обедняющие импульсы напряжения не равные нулю, т.е. способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999 и Uсм способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999 UFB, где C, Cn - значения емкостей при Uсм = UFB.

способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999

способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999

Результаты расчетов приведены в таблицах 1 и 2. Из них видно, что при Uсм способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999 UFB интегральная емкость изменяется примерно в десять раз больше, чем дифференциальная емкость, и поэтому такое изменение можно регистрировать с большей точностью. На фиг. 1 приведены эпюры подаваемых на МДП-структуру обедняющих импульсов напряжения U1, U2 и U3. Из фиг. 1 видно, что импульс U3 получают от верхнего уровня значения величины амплитуды первого импульса, до верхнего уровня значения величины амплитуды второго импульса, т.е. по своей амплитуде импульс U3 равен разности амплитуд U2 - U1. Это сделано для того, чтобы выполнить условие жесткой связи между C1, C2 и C3, для Uсм = UFB. Для того, чтобы обеспечить условие интегральности измеряемой емкости C3, U2 выбирают исходя из выполнения условия U2 способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999 2U1.

Так как соотношение (1) относится к ОПЗ полупроводника, то с учетом емкости диэлектрика C0 МДП-структуры можно записать следующие выражения для интегральной емкости Cк МДП-структуры:

способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999

способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999

На фиг. 2 приведена схема простого устройства, позволяющего реализовать предлагаемый способ определения UFB.

Здесь:

1 - емкостная мостовая схема, состоящая из емкости МДП-структуры (CМДП), нагрузочных емкостей Cн1 = Cн2, магазинов емкостей M1, M2 - состоящего из M"2 и M""2. M1 и M2 состоят из набора эталонных емкостей Cэт.

2 - генератор прямоугольных импульсов типа Г5-56.

3 - источник постоянного напряжения смещения (например Б5-43)

4 - регистрирующее устройство - осциллограф типа C1-70.

5 - сдвоенный переключатель П5 для переключения магазинов емкостей M1, M"2 и M""2.

Из сопоставления выражений (9) и (10) видно, что реализацию соотношения (1) между емкостями C1, C2 и C3 легко осуществить, используя емкостную мостовую схему (фиг. 2), в одно из плеч которой включена МДП-структура с емкостью CМДП и нагрузочной емкостью Cн, а во второе плечо - два последовательно включенных магазина емкостей M1 и M2, и соответственно с нагрузочной емкостью Cн1 = Cн2. Магазин M1 служит для установки баланса емкости C0, а M2 состоит из двух независимых магазинов емкостей M"2 и M""2 для C1 и C2 соответственно. В режиме плоских зон мостовая схема будет уравновешена на импульсе U1 для емкости C1, на импульсе U2 для емкости C2 и на импульсе U3 для емкости C3, которую получают путем последовательного соединения магазинов емкостей M"2 и M""2. Переключатель П5 находится в положении 4 (см. фиг. 2).

Последовательно действий при определении UFB следующая:

Включают МДП-структуру в одно из плеч моста, а во второе плечо моста включают последовательно-включенные магазины M1 и M2. На магазине M1 устанавливают емкость Cэт, равную C0 (П5 в положении 1), а на магазине M2 устанавливают емкость Cэт = C1 (П5 в положении 3), при последовательном соединении магазинов M"2 и M""2, (П5 находится в положении 4), на магазине M2 устанавливают емкость, равную C3.

Подают напряжение смещения Uсм на МДП-структуру.

Падают на структуру обедняющие импульсы напряжения:

U1 > 100 KT/q способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999 2,5 B, U2 способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999 5B.

Отметим, что длительность способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999tимп обедняющих импульсов U1 и U2, подаваемых на МДП-структуру, так же как и в прототипе, выбирают исходя из условия сохранения состояние обеднения в структуре после подачи обедняющего импульса. Постоянная времени релаксации tрел состояния обеднения для большинства исследуемых структур определяется генерационно-рекомбинационными параметрами полупроводника, и обычно находится в диапазоне 0,1 - 10 сек. Можно использовать соотношения для способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999tимп способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999 tрел/20. Предлагается использовать способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999tимп u = 1 - 10 мкс, при частоте следования:

f = 10 - 50 кГц. Поэтому tрел можно пренебречь.

Совмещаем во времени первый и второй импульсы напряжения и из разности их амплитуд получаем третий импульс U3.

Отметим, что интервал времени t между импульсами U1 и U2 задаем t < tф, где tф - длительность фронта импульса. Т.к. для стандартных генераторов типа Г5-56 tф < 10 нс, то этой величиной по сравнению с способ определения напряжения плоских зон полупроводника в   мдп-структурах, патент № 2133999tимп можно пренебречь.

Изменяем значения емкостей в магазине M"2 и M""2 до получения условия баланса моста на импульсах U1 и U2 соответственно.

Находим такое Uсм, при котором при последовательном соединении M"2 и M""2 на импульсе U3 баланс моста не нарушается. Это будет выполняться при Uсм = UFB, так как в этом случае выполняется условие (1). Таким образом, изменяя напряжение Uсм регистрируют условие, при котором переключение магазинов емкостей из положений, соответствующих емкостям C1 и C2, на положение, соответствующее емкости C3, не нарушает баланса моста. При этом

UFB = Uсм.

Существенным достоинством предложенного способа является простота определения UFB, при регистрации Uсм = UFB непосредственно. Способ позволяет без всяких расчетов определять UFB с высокой точностью ( ~1%) в широком интервале концентрации легирующей примести в полупроводнике (N ~ 1011 - 1018 см-3), толщин диэлектрика МДП-структуры (d ~ 0,01 - 1 мкм), плотности поверхностных состояний границы раздела диэлектрик-полупроводник (N ~ 1011 эВ-1 см-2).

Способ не требует для своей реализации знания параметров полупроводника и диэлектрика, не требует специальных образцов для измерения. Способ может быть реализован на стандартной радио-измерительной аппаратуре. По сравнению с прототипом в нем отсутствует малосигнальный тестовый импульс, и это позволяет значительно повысить точность определения UFB (в 2 - 3 раза) и уменьшить требования к чувствительности измерительной регистрирующей аппаратуре.

Литература:

[1] Zaininger K.H., Heiman F.P. - The Technique as an Analytical Tool - Solid State Technology Vol. 13 (1973) N 6 p. 47-55.

[2] Yun B. H. - Direct measurement of flat-bend voltage in MOS by infrared exception.

Applied Physics letters Vol. 21 (1972) N 5 p. 194-195.

[3] Бородзюля В. Ф., Голубев В.В. - Методы электрического тестирования заряда в диэлектрике и на поверхностных состояниях в МДП-структурах. Тезисы докладов Российской научно-технической конференции по физике диэлектриков с международным участием. "Диэлектрики - 93" Часть 2, стр. 100.

Класс H01L21/66 испытания или измерения в процессе изготовления или обработки

способ определения мольной доли li2o в монокристаллах linbo3 -  патент 2529668 (27.09.2014)
устройство для сортировки на группы по электрическим параметрам плоских хрупких изделий -  патент 2528117 (10.09.2014)
способ контроля качества алмазных пластин, предназначенных для изготовления детекторов ионизирующих излучений -  патент 2525636 (20.08.2014)
способ обнаружения скрытых дефектов матричных бис считывания -  патент 2523752 (20.07.2014)
термокамера для испытания электронных изделий -  патент 2523098 (20.07.2014)
способ контроля качества светодиодной структуры -  патент 2521119 (27.06.2014)
способ определения электропроводности и толщины полупроводниковых пластин или нанометровых полупроводниковых слоев в структурах "полупроводниковый слой - полупроводниковая подложка" -  патент 2517200 (27.05.2014)
способ контроля дефектности эпитаксиальных слоев кремния на диэлектрических подложках -  патент 2515415 (10.05.2014)
способ увеличения выхода годных при изготовлении высокоплотных электронных модулей -  патент 2511007 (10.04.2014)
способ определения стойкости электронных компонентов и блоков радиоэлектронной аппаратуры к воздействию ионизирующих излучений -  патент 2504862 (20.01.2014)
Наверх