способ обработки поверхности изделий дуговым разрядом в вакууме
Классы МПК: | C23C14/02 предварительная обработка покрываемого материала C23F4/04 физическим растворением |
Автор(ы): | Антипов Б.Ф., Сидоров И.П., Сенокосов Е.С., Сенокосов А.Е., Дикарев В.И. |
Патентообладатель(и): | Антипов Борис Федорович, Сидоров Игорь Петрович, Сенокосов Евгений Степанович, Сенокосов Андрей Евгеньевич, Дикарев Виктор Иванович |
Приоритеты: |
подача заявки:
1998-05-18 публикация патента:
10.01.2000 |
Изобретение относится к области очистки и обработки деталей в вакууме, в частности для удаления с поверхности окалины, окисных пленок, технологических загрязнений и дефектов отливок, упрочнения или отпуска приповерхностного слоя обрабатываемой детали, удаления заусениц и т.д. Способ включает возбуждение разряда и обработку поверхности катодными пятнами дуги, при этом обработке подвергают горячую заготовку перед ковкой, прокатом или другими технологическими операциями, возбуждение дугового разряда проводят в режиме возрастающего участка вольт-амперной характеристики, в качестве анода используют графит, накладывают на электрическую дугу внешнее магнитное поле так, чтобы его вектор был примерно параллельным вектору электрического поля дуги, а вектор градиента магнитной индукции был примерно параллельным обрабатываемой поверхности, перемещение катодных пятен осуществляют изменением величины и направления вектора градиента магнитной индукции, а изменяя величину разрядного тока дуги регулируют интенсивность обработки поверхности вплоть до оплавления дефектов литья горячей заготовки. Способ позволяет повысить качество обрабатываемой поверхности. 5 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5
Формула изобретения
Способ обработки поверхности изделий дуговым разрядом в вакууме, включающий возбуждение разряда и обработку поверхности катодными пятнами дуги, отличающийся тем, что обработку будущего изделия начинают с обработки горячей заготовки перед ковкой, прокатом или другими технологическими операциями путем возбуждения дугового разряда в режиме возрастающего участка вольт-амперной характеристики, использования графита в качестве анода и наложения на электрическую дугу внешнего магнитного поля так, чтобы его вектор был примерно параллельным вектору электрического поля дуги, а вектор градиента магнитной индукции был близким к параллельному обрабатываемой поверхности горячей заготовки, при этом изменяя величину и направление вектора градиента магнитной индукции перемещают катодные пятна по всей обрабатываемой поверхности горячей заготовки, а изменяя величину разрядного тока дуги, регулируют интенсивность обработки поверхности вплоть до оплавления дефектов литья горячей заготовки.Описание изобретения к патенту
Предлагаемый способ относится к области очистки и обработки деталей в вакууме на различных этапах технологического процесса, в частности для удаления с поверхности деталей окалин, окисных пленок, технологических загрязнений и дефектов отливок, упрочения или отпуска приповерхностного слоя обрабатываемой детали, удаления заусениц и т.п. К технологическим загрязнениям обычно относятся остатки смазочного материала от предыдущих технологических операций (резание, прокат, прессование), состоящие из органических веществ и в процессе конденсации образующие высокомолекулярные продукты. К таким веществам можно отнести остатки ингибиторов, частично закрывающих поверхность, а также загрязнения неорганического происхождения: микроструктуру металлов, мелкие зерна абразивных веществ и т.д. Дефекты отливок приводят впоследствии к дефектам типа волосовины, трещинам, флокенам и пленам. Известные способы очистки и обработки поверхности изделий основаны:- на использовании механических средств: гидросбива (патент ФРГ N 4007727, B 21 B 45/04, 1990), порошкового абразивного материала (патент Японии N 58-172605, B 21 B 45/06, 1983), шлифовальных станков (патент Японии N 58-122112, B 21 B 45/06, 1983, окалиноломателей (патент Франции N 2702973, B 21 B 45/04, 1994; патент США N 5201206, B 21 B 45/04, 1993 и другие), дробеметных колес (авт. свид. СССР N 1063492, B 08 B 13/00, 1982; Аксенов П. Н. Оборудование литейных цехов. - М., 1968, с. 394 и др.);
- на применении водных растворов обычных моющих средств и растворителей, представляющих собой органические жидкости различной полярности (бензол, керосин, ацетон, дихрорэтан и другие) (патент Японии N 63-8273, B 21 B 45/06, 1988; Фролов В.В. и др. Подготовка поверхности металлических изделий для последующих технологических операций. - М., 1990 и др.);
- на воздействии дуговым разрядом на обрабатываемую поверхность изделий при атмосферном давлении (авт. свид. СССР N 476041, B 08 B 1/00, 1971; патент США N 5143561, B 21 B 45/06, 1992; патент Франции N 2664510, B 21 B 37/08, 1992; Литвинов В.К., Морозов А.П. Исследование энергетических характеристик плазменно-дуговых процессов зачистки металлов круглого профиля. Известия ВУЗов "Черная металлургия", 1982, N 4 и др.);
- на воздействии дуговым разрядом на обрабатываемую поверхность изделий при атмосферном давлении с одновременным вводом в зону очистки моющих веществ, например, кальцинированной соды (авт. свид. СССР N 937689, B 21 B 7/04, 1980; патент США N 5036689, B 21 B 45/04, 1991; Промышленный опыт использования плазменной технологии обработки металлов. - Л., 1984, с. 48 - 50; Стебленко В. Л., Ситников И.В. Использование высокочастотного дугового разряда атмосферного давления для очистки и активации металлических поверхностей. Плазмотехнология. Сборник научных трудов. - Киев, 1990 и др.);
- на воздействии дуговым разрядом на обрабатываемую поверхность изделий в защитной газовой среде (авт. свид. СССР N 1272725, C 22 B 9/20, 1985; Терехов В. П. Очистка поверхности проволоки дуговым разрядом. Бюл. ин-та Черметинформация, 1976, N 7 и др.);
- на воздействии дуговым разрядом и плазмообразующим газом (аргон, азот или их смесь с водородом) на обрабатываемую поверхность изделий (авт. свид. СССР N 1770420, C 22 B 9/20, 1990; N 1812230, C 23 C 14/32, 1990; N 1048847, C 23 C 14/32, 1987; Домбровский В. Плазменная металлургия. Л., 1972, с. 123 и др.);
- на воздействии дуговым разрядом на обрабатываемую поверхность изделий в защитной газовой струе с одновременным процессом сварки (авт. свид. СССР N 171056, B 08 B 7/00, 1963; Максимов Л.Ю., Кривонос Г.А. Экологически безопасная очистка металлов в потоке. Тяжелое машиностроение, 1997, N 5);
- на воздействии дуговым разрядом на обрабатываемую поверхность изделий в вакууме (авт. свид. СССР N 1695704, C 23 С 14/12, 1987; Булат В.Е., Эстерлис М.Х. Очистка металлических изделий от окалины, окисной пленки и загрязнений электродуговым разрядом в вакууме. Физика и химия обработки материалов, 1987, N 3 и др.);
- на воздействии дуговым разрядом на обрабатываемую поверхность изделий в вакууме с наложением на электрическую дугу постоянного магнитного поля (авт. свид. СССР N 719710, B 08 B 3/10, 1977; N 935141, B 08 B 3/10, 1980; N 1749279, C 22 B 9/20, 1990; Патон Б.Е. и др. Плазменно-дуговой переплав поверхностного слоя слитков и заготовок. Сталь, 1987, N 1 и др.). Из известных способов в настоящее время широко применяются на практике химические и электрохимические способы очистки поверхности изделий. Агрегаты, используемые в таких линиях очистки, требуют значительных производственных площадей. Выделяющиеся при травлении испарения не только вредны для обслуживающего персонала, но и разрушительно действуют на производственное оборудование и цеховые конструкции. Кроме того, необходимость производства кислот, щелочей и утилизации отходов используемых кислот и щелочей требуют принятия дополнительных мер для предотвращения загрязнения окружающей среды. Альтернативные механические способы очистки (пропускание металла через барьеры из зачищающих тросов, абразивная обработка, обточка или фрезирование) при малой эффективности и производительности связаны также со значительными отходами материалов. Совершенно новые возможности для очистки поверхности изделий от практически любых загрязнений открывают способы удаления с поверхности изделий остатков технологических смазок, окалины, оксидных пленок и т.п. с применением электродугового разряда в вакууме. Среди указанных способов наиболее близким по технической сущности к предлагаемому является " Способ обработки поверхности изделий дуговым разрядом в вакууме" (авт. свид. СССР N 1695704, C 23 C 14/02, 1987), который и выбран в качестве прототипа. При горении дугового разряда в вакууме на поверхности очищаемого металла (катода) формируется множество хаотически перемещающихся катодных пятен, в которых выделяется до 90% энергии разряда. Благодаря очень высокой плотности энергии происходит мгновенный локальный разогрев поверхности. В результате окалина и другие загрязнения испаряются и остается чистая и дополнительно пассивированная поверхность. Способ-прототип обеспечивает возможность регулирования удельного расхода энергии и направленного перемещения катодных пятен посредством перемещения экрана с отверстиями. Экспериментально установлено, что скорость перемещения экрана и режим горения дуги должны быть такими, чтобы значение удельного расхода энергии, приходящейся на толщину обрабатываемого слоя, равную 1 мкм, находилось в диапазоне (0,2...0,8) кВт - ч/(м2






изменяющая его движение по закону


где c0 - скорость света в вакууме; m0 - масса заряда в вакууме. Изменяя величину и направление вектора градиента магнитной индукции, перемещают катодные пятна по всей обрабатываемой поверхности горячей заготовки, удаляя окисную пленку и загрязнения, а изменяя величину разрядного тока дуги, регулируют интенсивность обработки поверхности вплоть до оплавления заусениц, шероховатостей и других дефектов литья горячей заготовки, т. е. проводят чистовую обработку заготовки. Число катодных пятен возрастает с увеличением тока разряда. Так как ток в единичном катодном пятне является величиной постоянной для определенного материала катода и находится в диапазоне 10...15 А для различных сталей. При превышении верхнего предела катодного пятна делится, а при значениях тока ниже нижнего предела пятно исчезает. Ориентация вектора магнитного поля примерно параллельно вектору электрического поля

Класс C23C14/02 предварительная обработка покрываемого материала
Класс C23F4/04 физическим растворением