полупроводниковый датчик давления
Классы МПК: | G01L9/04 резисторных тензометров G01L19/04 устройства, компенсирующие влияние изменений температуры |
Автор(ы): | Рябов В.Т. |
Патентообладатель(и): | Рябов Владимир Тимофеевич |
Приоритеты: |
подача заявки:
1999-03-18 публикация патента:
20.04.2001 |
Изобретение относится к устройствам для измерения давления и предназначено для использования в первичных преобразователях давления в электрический сигнал. Устройство содержит пьезомост, сформированный на упругой мембране кремниевого чувствительного элемента, плечи пьезомоста объединены в общей точке, подключенной к нулю питания датчика или к напряжению питания датчика, каждое плечо имеет измерительный выход и вход питания плеча пьезомоста, а также термокорректор, имеющий два вывода опорных напряжений с различными температурными градиентами, а также дифференциальный усилитель сигнала давления. При этом для каждого плеча пьезомоста введено по управляемому источнику питания плеч пьезомоста, построенному на операционном усилителе, инверсный вход которого подключен к измерительному выходу плеча пьезомоста, прямой вход - к одному из выводов опорного напряжения термокорректора, а выход - к входу питания плеча пьезомоста и к одному из входов дифференциального усилителя сигнала давления. Термокорректор датчика содержит операционный усилитель термокорректора с резисторами и термомост, один измерительный вывод термомоста через резистивный делитель соединен с прямым входом операционного усилителя термокорректора, другой через резистор - с инверсным входом операционного усилителя термокорректора. Для удобства настройки между инверсным входом и выходом операционного усилителя термокорректора включен резистивный делитель, отвод которого является первым выводом термокорректора, а выход операционного усилителя термокорректора является вторым выводом термокорректора. Технический результат - упрощение схемотехнического решения при сохранении возможности независимой компенсации мультипликативной и аддитивной составляющих погрешности и повышение линейности выходного сигнала. 1 з.п. ф-лы, 8 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8
Формула изобретения
1. Полупроводниковый датчик давления, содержащий пьезомост, сформированный на упругой мембране кремниевого чувствительного элемента, к которой приложено измеряемое давление, каждое плечо пьезомоста включает хотя бы один тензорезистор, плечи пьезомоста объединены в общей точке, подключенной к нулю питания датчика или к напряжению питания датчика, причем в ней сходятся тензорезисторы с разными знаками приращения сопротивления при изменении давления, каждое плечо имеет измерительный выход плеча пьезомоста и вход питания плеча пьезомоста, а также термокорректор, имеющий два вывода опорных напряжений с различными температурными градиентами, а также дифференциальный усилитель сигнала давления, отличающийся тем, что для каждого плеча пьезомоста введено по управляемому источнику питания плеч пьезомоста, построенному по схеме, содержащей операционный усилитель, инверсный вход которого подключен к измерительному выходу плеча пьезомоста, прямой вход подключен к одному из выводов опорного напряжения термокорректора, а выход - к входу питания плеча пьезомоста и к одному из входов дифференциального усилителя сигнала давления. 2. Полупроводниковый датчик давления по п.1, термокорректор которого содержит операционный усилитель термокорректора, резисторы и термомост, причем один измерительный вывод термомоста через резистивный делитель соединен с прямым входом операционного усилителя термокорректора, а второй через резистор - с инверсным входом, отличающийся тем, что между инверсным входом и выходом усилителя термокорректора включен резистивный делитель, отвод которого является первым выводом термокорректора, а выход операционного усилителя термокорректора является вторым выводом термокорректора.Описание изобретения к патенту
Изобретение относится к измерительной технике и может быть использовано в первичных преобразователях давления в электрический сигнал для систем автоматического управления, в информационных, контрольных и других приборах, работающих в широком диапазоне температур, в частности в электронных системах зажигания автомобилей. Известен полупроводниковый датчик давления, содержащий пьезомост, сформированный на тонкой полупроводниковой мембране, к которой приложено давление. Каждое плечо моста состоит из двух последовательно соединенных полупроводниковых тензорезисторов, плечи электрически соединены в одном конце, каждое имеет вход питания и измерительный вывод. Операционный усилитель источника питания моста присоединен инверсным входом к точке соединения плеч тензомоста, выход его присоединен к концу одного из плеч. Измерительные выводы плеч (концы измерительной диагонали) тензомоста присоединены соответственно к прямому и инверсному входу второго операционного усилителя. Выход второго усилителя присоединен к входу питания другого плеча моста. Уровень напряжения, который измеряется в соответствии с изменением температуры окружающей среды, приложен к положительному входу первого операционного усилителя (патент Великобритании N 2012967, МКИ G 01 L 9/04, заявлен 5.01.1979, дата первоначального приоритета 6.01.1978, опубликован 1.08.1979). В сигнале пьезомоста присутствуют два рода температурных погрешностей. Во-первых, при изменении температуры кристалла изменяется чувствительность тензорезисторов, при этом выходной сигнал изменяется пропорционально изменению чувствительности. Это мультипликативная составляющая погрешности, для ее компенсации следует изменять ток питания пьезомоста обратно пропорционально изменению чувствительности (что и сделано в рассматриваемом патенте) либо соответствующим образом увеличивать коэффициент усиления усилителя. Во-вторых, разность свойств пьезорезисторов, наличие балансировочного резистора и температурные деформации мембраны при неизменном давлении приводят к появлению аддитивной погрешности, складывающейся с полезным сигналом. Для ее компенсации следует из сигнала пьезомоста вычитать некоторую величину, пропорциональную температуре. В рассматриваемом патенте для компенсации этой погрешности использован резистивный делитель, сигнал которого подается на один из входов второго операционного усилителя. Недостатком рассматриваемой схемы является неполное использование напряжения питания датчика для питания тензомоста, поскольку последовательно с мостом включен дополнительный задающий ток резистор. Кроме того, схема неудобна в настройке, при компенсации аддитивной погрешности при повышенной температуре будет сбиваться исходная настройка при комнатной. Наиболее близким техническим решением, позволяющим независимо компенсировать мультипликативную и аддитивную составляющие погрешности, является датчик давления (патент России N 2086940 от 10.08.1997, МКИ G 01 L 9/04, 19/04, приоритет изобретения 10.08.1995), содержащий пьезомост с управляемым источником питания плеч пьезомоста, дифференциальный усилитель сигнала давления с отдельным входом смещения, а также термокорректор, состоящий из термомоста и двух операционных усилителей, выдающих опорные напряжения для компенсации аддитивной и мультипликативной составляющих погрешности. Однако датчик сложен схемотехнически и содержит 7 операционных усилителей. Кроме того, используемый в этой схеме источник питания плеч пьезомоста приводит к некоторой нелинейности выходного сигнала, он порождает квадратичную погрешность, составляющую в реальных схемах около 0.5% полной шкалы. Целью изобретения является упрощение схемотехнического решения при сохранении возможности раздельной, независимой компенсации мультипликативной и аддитивной составляющих погрешности, и повышение линейности выходного сигнала. Аналог и прототип датчика давления включают измерительный пьезомост, источник питания плеч пьезомоста, термокорректор и дифференциальный усилитель сигнала давления. Измерительный пьезомост состоит из тензорезисторов, расположенных на кремниевой мембране, и пассивных резисторов. Мембрана сформирована на кремниевом кристалле селективным травлением и воспринимает измеряемое давление. Основная функция этого элемента - выделение сигнала, пропорционального действующему на мембрану давлению. Существенными признаками пьезомоста являются характеристики составляющих его резисторов: пассивный резистор, сопротивление которого не зависит от напряжений в мембране; активный или тензорезистор, сопротивление которого увеличивается или уменьшается с ростом давления на мембране пьезомоста. Важен способ соединения этих резисторов и наличие внешних выводов: для питания каждого из плеч пьезомоста, общей точки плеч пьезомоста и измерительного вывода сигнала каждого плеча пьезомоста. Другим элементом датчика является источник питания плеч пьезомоста, основной функцией которого является питание тензорезисторов пьезомоста заданным током. Так как чувствительность тензорезисторов падает с повышением температуры, ток или напряжение питания плеч пьезомоста часто делают зависимым от температуры. Обычно оба плеча пьезомоста бывают подключены к единому источнику питания плеч пьезомоста. Существенным является количество источников питания: один на весь пьезомост или на каждое плечо пьезомоста свой источник. Кроме того, существенно подключение выводов операционного усилителя, на котором обычно выполняется источник питания плеч пьезомоста. Термокорректор датчика формирует зависимое от температуры напряжение с требуемым температурным градиентом. Существенной является совокупность внешних выводов. Термокорректор, пригодный для использования в патентуемом датчике, должен иметь по крайней мере четыре вывода: вход питания Vcc; ноль питания - 0, выход первого опорного напряжения Vdl и выход второго опорного напряжения Vd2. Удобство настройки датчика, как будет показано позже, определяется возможностью независимой регулировки полусуммы и полуразности этих градиентов, что также является существенным признаком. Для патентуемой схемы пригоден термокорректор, состоящий из термомоста и двух операционных усилителей, выдающих опорные напряжения для компенсации аддитивной и мультипликативной составляющих погрешности (патент России N 2086940 от 10.08.1997, приоритет изобретения 10.08.1995). Значения температурных градиентов выходных напряжений этого термокорректора можно регулировать независимо, значит, независимо можно будет регулировать и их полусумму и полуразность. Однако корректор конструктивно сложен, и далее приведены более простые варианты построения термокорректора, удовлетворяющие выше оговоренным существенным признакам. Дифференциальный усилитель сигнала давления датчика усиливает сигнал пьезомоста до требуемого уровня. Иногда для компенсации температурных погрешностей отдельные резисторы этого усилителя выполняют с существенно отличными от других температурными коэффициентами сопротивления (ТКС). В прототипе оговорено использование дифференциального усилителя с отдельным входом смещения. Для использования в патентуемом датчике подойдет дифференциальный усилитель без отдельного входа смещения, т.е. имеющий два входа сигнала и выход, эти выводы имеются у любого дифференциального усилителя. Сущностью патентуемого датчика давления является использование отдельных управляемых источников питания плеч пьезомоста для каждого из двух плеч пьезомоста. Каждый источник питания плеч пьезомоста построен на операционном усилителе. Причем на прямой вход операционного усилителя источника питания плеч пьезомоста подано свое температурно-зависимое опорное напряжение от термокорректора. Инверсный вход операционного усилителя источника питания плеча пьезомоста подключен к измерительному выводу плеча пьезомоста, а выход - к входу питания плеча пьезомоста и одному из входов измерительного дифференциального усилителя сигнала. Удобство настройки датчика определяется возможностью независимой регулировки полусуммы и полуразности температурных градиентов опорных напряжений термокорректора, вариант реализации такого термокорректора оговорен в зависимом п. 2 формулы. На фиг. 1-8 показаны схемы, иллюстрирующие изобретение. На фиг. 1, 2 и 3 показаны различные варианты построения пьезомостов; на фиг. 4, 5, 6 и 7 - варианты построения термокорректора; на фиг. 8 - схема датчика давления, иллюстрирующая возможность технической реализации изобретения. Пьезомост, изображенный на фиг. 1, на мембране содержит 4 активных тензорезистора pr1-pr4 в зонах действия максимальных сжимающих и растягивающих напряжений. Здесь каждое плечо измерительного пьезомоста состоит из двух тензорезисторов, увеличивающих (pr2, pr3) и уменьшающих (pr1, pr4) свое сопротивление при приложении к мембране давления. Оба плеча объединены общей точкой 0, причем в ней сходятся тензорезисторы pr1 и pr2 с разными знаками приращения сопротивления при увеличении давления. Каждое плечо имеет измерительный выход от другого вывода объединенных в общей точке резисторов (D1 и D2 соответственно) и вход питания плеча пьезомоста (Vp1 и Vp2). Пьезомост, изображенный на фиг. 2, на мембране содержит также 4 тензорезистора. Каждое плечо пьезомоста состоит из двух тензорезисторов, увеличивающих (pr2, pr3) и уменьшающих (pr1, pr4) свое сопротивление при приложении к мембране давления, и двух пассивных резисторов R1 и R2, сопротивление которых от давления не зависит. Они предназначены для балансировки пьезомоста для получения требуемой выходной характеристики и могут быть расположены как на кремниевом кристалле, так и вне его. Пассивный резистор в одном из плеч может отсутствовать. Здесь также оба плеча объединены общей точкой 0, причем в ней сходятся тензорезисторы pr1 и pr2 с разными знаками приращения сопротивления при увеличении давления. Каждое плечо имеет измерительный выход от другого вывода объединенных в общей точке резисторов (D1 и D2 соответственно) и вход питания плеча пьезомоста (Vp1 и Vp2). Пьезомост, изображенный на фиг. 3, на мембране содержит 2 активных тензорезистора pr1 и pr2 в зонах действия максимальных сжимающих и растягивающих напряжений. Здесь каждое плечо измерительного пьезомоста состоит из тензорезистора, увеличивающего (pr2) или уменьшающего (pr1) свое сопротивление при приложении к мембране давления, и пассивного резистора (R1 или R2), сопротивление которого от давления не зависит. Оба плеча объединены общей точкой 0, причем в ней сходятся тензорезисторы pr1 и pr2 с разными знаками приращения сопротивления при увеличении давления. Каждое плечо имеет измерительный выход от другого вывода объединенных в общей точке резисторов (D1 и D2 соответственно) и вход питания плеча пьезомоста (Vp1 и Vp2). На фиг. 4 представлен термокорректор, содержащий термомост, состоящий из четырех резисторов, по крайней мере один из которых имеет существенно отличный от других ТКС. Такой корректор способен выполнять свои функции, т.е. выдавать два температурно-зависимых напряжения Vdl и Vd2 с возможностью регулировки их полусуммы и полуразности. Однако он требует лазерной пригонки значений терморезисторов. Добавление последовательно-параллельно подключенных пассивных резисторов, сопротивление которых можно увеличивать лазерной пригонкой к плечам термомоста, может облегчить настройку, однако для выдачи реально требуемых градиентов около +2

здесь Vt1, Vt2 - напряжения на измерительных выводах первого и второго плеча термомоста термокорректора. Балансировку можно проводить либо лазерной пригонкой резисторов термомоста, либо резисторов R1 или R2. Опорные напряжения, подаваемые на прямые входы источников питания плеча пьезомоста, должны иметь определенный температурный градиент

Vd1 = V0(1+






Vd2 = V0(1+






здесь






Для сбалансированного термокорректора значения полусуммы и полуразности температурных градиентов составляет


здесь














здесь pr0 - номинальное значение тензорезистора пьезомоста;







Формула (1) описывает выходной сигнал схемы и состоит из трех слагаемых. Первое слагаемое





























Благодаря симметрии входной части схемы обеспечивается взаимная компенсация смещения и температурного дрейфа усилителей DA1 и DA2 (фиг. 8). Кроме того, симметричное включение плеч пьезомоста как по цепям питания, так и по измерительным цепям минимизирует квадратичные погрешности при обработке сигналов тензорезисторов. Если функции температурно-зависимых элементов термомоста выполняют p-n переходы, как показано на фиг. 6 и 7, все элементы датчика можно разместить на кристалле чувствительного элемента.
Класс G01L9/04 резисторных тензометров
Класс G01L19/04 устройства, компенсирующие влияние изменений температуры