лампа видимого излучения
Классы МПК: | H01J61/30 баллоны; колбы H01J61/12 состав газового наполнения; специальные рабочие давления и температуры H01J17/16 баллоны; колбы H01J17/20 выбор веществ газовых наполнителей; рабочее давление или температура |
Автор(ы): | ТЕРНЕР Брайен (US), КАМАРЕХИ Мохаммед (US), ЛИВАЙН Лесли (US), ЮРИ Майкл (US) |
Патентообладатель(и): | ФЬЮЖН ЛАЙТИНГ, ИНК. (US) |
Приоритеты: |
подача заявки:
1994-10-17 публикация патента:
20.06.2002 |
Предложена лампа для получения видимого света, в колбу которой помещен наполнитель, содержащий серу, селен и/или теллур. Лампа используется в режиме, обеспечивающем высокую эффективность, причем отношение объема колбы к площади ее поверхности составляет не менее 0,45 см, концентрация серы, селена или теллура в составе наполнителя не превышает 1,75 мг/см3, а подводимая к наполнителю мощность на единицу объема колбы находится в диапазоне 5-100 Вт/см3. 1 з.п.ф-лы, 5 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5
Формула изобретения
1. Лампа видимого излучения, содержащая колбу из светопроводящего материала с размещенным в ней наполнителем, содержащим в качестве первичного источника видимого излучения по крайней мере одно вещество, выбранное из группы, состоящей из серы, селена и теллура, и средства подвода электромагнитной энергии к наполнителю, причем указанное вещество присутствует в составе наполнителя в концентрации менее 1,75 мг/см3, отношение объема колбы к площади ее наружной поверхности составляет не менее 0,45 см, а средства подвода электромагнитной энергии обеспечивают мощность на единицу объема колбы от 5 до 100 Вт/см3. 2. Лампа по п. 1, дополнительно содержащая средства принудительного воздушного охлаждения.Описание изобретения к патенту
Изобретение относится к средствам получения видимого излучения и конструкции лампы видимого излучения. Известны безэлектродные лампы, используемые для освещения и работающие на электромагнитной энергии, включая микроволновый и радиодиапазон. Также известно, что подобные лампы могут содержать наполнитель, в котором эмиссия генерируется серой или селеном или их соединениями. Такая лампа описана в заявке США 071027, поданной 3.06.93 г., и в международной публикации РСТ WO 92/08240, причем лампа, известная из WO 92/08240, рассматривается в качестве ближайшего аналога изобретения. Как известно, важным показателем экономичности лампы является ее эффективность, то есть отношение энергии излучаемого видимого света к электрической энергии, потребляемой лампой, так как эта величина определяет затраты на работу лампы. Лампа, описанная в упомянутой публикации РСТ, относится к типу ламп, имеющих высокую эффективность. Согласно настоящему изобретению эффективность таких ламп может быть значительно увеличена при их работе в особых условиях. В качестве технического решения, повышающего эффективность такого рода ламп, предложена лампа видимого излучения, содержащая колбу из светопроводящего материала с размещенным в ней наполнителем, содержащим в качестве первичного источника видимого излучения по крайней мере одно вещество, выбранное из группы, состоящей из серы и селена, и средства подвода электромагнитной энергии к наполнителю. Отличие предложенной лампы от вышеуказанного ближайшего аналога заключается в том, что указанное вещество присутствует в составе наполнителя в концентрации менее 1,75 мг/см3, отношение объема колбы к площади ее наружной поверхности составляет не менее 0,45 см, а средства подвода электромагнитной энергии обеспечивают мощность на единицу объема колбы от 5 до 100 Вт/см3. При этом в группу указанных веществ дополнительно входит теллур. В частном варианте выполнения лампа может содержать средства принудительного воздушного охлаждения. Лампа с такой высокой (не менее 0,45 см) величиной отношения объема колбы к площади ее поверхности позволяет минимизировать количество тепла, теряемого через стенки колбы лампы. Поскольку подводимая электрическая энергия преобразуется либо в свет, либо в тепло, увеличение отношения объема к площади поверхности приводит к повышению эффективности излучения света. При использовании лампы с колбой сферической формы, отношение объема к площади поверхности увеличивается при увеличении диаметра колбы. Другой особенностью лампы по изобретению является то, что она работает в режиме при концентрации серы, селена или теллура в составе наполнителя менее 1,75 мг/см3 и мощности на единицу объема колбы от 5 до 100 Вт/см3. Работа в данном режиме приводит к неожиданно резкому повышению эффективности. Изобретение будет более детально рассмотрено с помощью приводимых чертежей, на которых:фиг.1 представляет собой общий вид заявленного устройства;
фиг.2 - вид сбоку на фиг.1;
фиг.3 - спектр излучения при использовании серного наполнителя;
фиг.4 - спектр излучения при использовании селенового наполнителя;
фиг.5 - спектр излучения при использовании теллурового наполнителя. Сведения, подтверждающие возможность осуществления изобретения
На фиг. 1 изображена лампа 2, использующая СВЧ-энергию. Аналогичным образом может быть использована энергия волн радиодиапазона. Лампа 2 содержит резонатор 4, состоящий из металлического цилиндрического элемента 6 и металлической сетки 8. Сетка 8 предотвращает утечку СВЧ-энергии, но позволяет свету свободно выходить из резонатора. Колба 10 размещается внутри резонатора и в данном варианте выполнения имеет сферическую форму. Как показано на фиг.2, колба поддерживается стержнем 12, который соединен с электродвигателем 14, вращающим колбу. Вращение обеспечивает стабильность режима работы лампы. СВЧ-энергия генерируется магнетроном 16 и по волноводу 18 подводится к прорези (не показана) в стенке резонатора, из которой она поступает в резонатор и, в частности, передается наполнителю колбы 10. Колба 10 содержит оболочку и размещенный в ней наполнитель. Наполнителем могут служить сера, селен, теллур или их соединение одного из этих веществ. Примерами таких веществ являются: InS, Аs2S3, S2CI2, CS2, In2S3, SeS, SeO2, SeCl4, SeTe, P2Se5, Se3As2, TeO, TeS, TeCl5, TeBr5 и Tel5. Могут использоваться также и другие соединения серы, селена и теллура, например, имеющие сравнительно низкое давление паров при комнатной температуре, то есть они находятся в твердом или в жидком состоянии и имеют давление паров при рабочей температуре, достаточное для обеспечения полезной светоотдачи. В соответствии с изобретением, отношение объема к площади поверхности колбы составляет не менее 0,45 см. Как было указано, это обеспечивает высокую эффективность. Желательной является величина отношения выше 0,6 см. Здесь под термином "площадь поверхности" в словосочетании "отношение объема к площади поверхности" понимается площадь внешней поверхности оболочки колбы (а объем - область, ограниченная внутренней поверхностью). Далее, концентрация серы, селена или теллура в составе наполнителя во время работы составляет ниже 1,75 мг/см3, а подводимая мощность на единицу объема колбы составляет менее 100 Вт/см3, но выше 5 Вт/см3. Примечательно, что лампа, в соответствии с данным изобретением, выходит в рабочий режим при подводимой мощности на единицу объема колбы, составляющей менее 20 Вт/см3. Термин "мощность на единицу объема" понимается, как мощность, подводимая к лампе, деленная на объем колбы. В лампах, выполненных в соответствии с данным изобретением, может использоваться любой наполнитель или смесь наполнителей, которые при рабочей температуре и при заданной подводимой мощности на единицу объема колбы обеспечивают в колбе концентрацию серы, селена и/или теллура, достаточную для получения полезного освещения. Лампа может обладать пониженной энергоотдачей в инфракрасной области и давать спектральные сдвиги при изменениях подводимой мощности на единицу объема колбы. При повышенных значениях подводимой мощности на единицу объема колбы может потребоваться принудительное воздушное охлаждение. Пример I
Использовали сферическую колбу с внешним диаметром 4,7 см (толщина стенок 1,5 мм), имеющую отношение объема к площади поверхности, равное 0,64 см. Подводимая мощность равнялась 1100 Вт, мощность на единицу объема колбы - 19,5 Вт/см3, в качестве наполнителя использовали серу с концентрацией паров в составе наполнителя, равной 1,3 мг/см3. Скорость вращения лампы была равна 300 об/мин. Спектр излучаемого видимого света имел вид, приведенный на фиг. 3. Эффективность, усредненная по всей поверхности лампы, была равна 165 люмен/Вт (СВЧ-ватты). Отношение энергии, излучаемой в видимом диапазоне, к энергии в инфракрасной части спектра составило 10:1. Как обычно в лампах подобного типа наполнитель включал инертный газ аргон под давлением 150 Торр (20,0 кПа). Сравнение (Пример I)
В примере вышеупомянутой РСТ-публикации, в котором наполнитель включает "только серу", безэлектродную кварцевую лампу сферической формы с внутренним диаметром колбы 2,84 см (внешний диаметр 3,0 см) и с отношением объема к площади поверхности 0,43 см, заполнили серой, плотностью 0,062 мг-моль/см3 (1,98 мг/см3) и аргоном под давлением 60 Торр (8,0 кПа). При возбуждении СВЧ-излучением с подводимой мощностью на единицу объема колбы около 280 Вт/см3, усредненная эффективность составила 140 люмен/Вт. Пример II
Сферическую колбу с внешним диаметром 40 мм (внутренний диаметр 37 мм), имеющую отношение объема к площади поверхности, равное 0,53 см, заполнили 34 мг селена и ксеноном под давлением 300 Торр (40,0 кПа), что составило концентрацию селена в составе наполнителя 1,28 мг/см3. Лампа, находящаяся внутри резонатора, потребляла 1000 Вт СВЧ-мощности. Спектр видимого излучения приведен на фиг.4. Усредненная эффективность превысила 180 люмен/Вт. Сравнение (Пример II)
Как описано в вышеупомянутой РСТ-публикации, безэлектродную кварцевую лампу, имеющую объем 12 см3 (толщина стенок 1,5 мм), заполнили 54 мг селена и аргоном под давлением 60 Торр (8,0 кПа). Лампу поместили в СВЧ-резонатор и возбуждали СВЧ-энергией мощностью 3500 Вт. Усредненная эффективность составила около 120 люмен/Вт. Как можно видеть из приведенных примеров, при использовании предлагаемого режима достигается существенное повышение эффективности. Пример III
Сферическую колбу с внешним диаметром 40 мм (внутренний диаметр 37 мм), имеющую отношение объема к площади поверхности, равное 0,53 см, заполнили 20 мг теллура и ксеноном под давлением 100 Торр (13,3 кПа), что составило концентрацию теллура в составе наполнителя 0,75 мг/см3. Лампа, находящаяся внутри резонатора, потребляла 1100 Вт СВЧ-мощности. Спектр видимого излучения приведен на фиг.5. Усредненная эффективность превысила 105 люмен/Вт. Описана лампа, имеющая повышенную эффективность. Хотя изобретение описано предпочтительными вариантами его осуществления, необходимо иметь в виду, что они носят лишь иллюстративный характер и специалисты в данной области могут вносить изменения, не отступая от существа и объема изобретения, ограниченного только прилагаемой формулой и ее эквивалентами.
Класс H01J61/30 баллоны; колбы
Класс H01J61/12 состав газового наполнения; специальные рабочие давления и температуры
Класс H01J17/16 баллоны; колбы
Класс H01J17/20 выбор веществ газовых наполнителей; рабочее давление или температура
плоская индикаторная панель, имеющая откачные отверстия в пределах зоны индикации - патент 2390869 (27.05.2010) | |
способ изготовления разрядника - патент 2313849 (27.12.2007) | |
газонаполненный разрядник - патент 2234780 (20.08.2004) | |
разрядник - патент 2223580 (10.02.2004) | |
металлогалогенная лампа - патент 2201008 (20.03.2003) | |
металлогалогенная лампа - патент 2165659 (20.04.2001) | |
металлогалогенная лампа - патент 2155414 (27.08.2000) | |
рабочая среда лампы высокочастотного емкостного разряда - патент 2154323 (10.08.2000) | |
рабочая среда лампы тлеющего разряда - патент 2151442 (20.06.2000) | |
смесь газов для наполнения газоразрядных приборов - патент 2146405 (10.03.2000) |