способ получения износостойкого композиционного материала на основе карбида титана

Классы МПК:C22C1/04 порошковой металлургией
C22C29/10 на основе карбидов титана
C22C33/02 порошковой металлургией 
B22F3/12 уплотнение и спекание
Автор(ы):, , ,
Патентообладатель(и):Тюменский государственный нефтегазовый университет
Приоритеты:
подача заявки:
2000-05-31
публикация патента:

Изобретение относится к области порошковой металлургии, в частности к технологии производства композиционных материалов из карбидных и металлических компонентов. Способ включает прессование шихты, содержащей, мас.%: карбид хрома 8-10, порошок серого чугуна 50-52, карбид титана остальное, и последующее спекание. Способ позволяет удешевить и упростить технологию получения износостойкого композиционного материала на основе карбида титана. 2 ил., 1 табл.

Формула изобретения

Способ получения износостойкого композиционного материала, включающий прессование шихты, содержащей порошки карбида титана и чугуна, и последующее спекание, отличающийся тем, что в качестве чугуна используют серый чугун, а в шихту дополнительно вводят порошок карбида хрома при следующем соотношении компонентов, мас. %:

Карбид хрома - 8-10

Порошок серого чугуна - 50-52

Карбид титана - Остальное

Описание изобретения к патенту

Изобретение относится к области порошковой металлургии, в частности к технологии производства композиционных материалов из карбидных и металлических компонентов.

Известны карбидостали - композиционные материалы состава карбид титана - сталь, которые применяют для изготовления износостойких деталей /Гуревич Ю. Г., Нарва В.К., Фраге Н.Р. Карбидостали. - М.: "Металлургия", 1988. - С.68/. Способы получения карбидосталей основаны на прессовании смеси порошковых материалов в брикеты и последующее спекание полученных прессовок, либо пропитывание пористого спеченного карбидного каркаса стальным расплавом.

При получении карбидосталей способом спекания наблюдается неоднородность по составу, структуре и свойствам спеченных изделий, что связано с эффектом миграции расплава связки в объеме заготовки. Технология изготовления карбидосталей способом спекания характеризуется узким интервалом температур спекания.

Наиболее близким по существенным признакам к заявляемому способу является способ изготовления износостойкого спеченного материала, включающий прессование шихты, содержащей чугунный порошок, 20-50% порошкообразного карбида титана и, в случае необходимости, дополнительно металлические порошки, улучшающие структуру металлической матрицы, предварительное спекание, повторное прессование и окончательное спекание (DE 2234683 В2, B 22 F 3/16, 1979).

Недостатком этого способа является сложная технология получения износостойкого материала (повторное прессование и спекание), а также применение дорогостоящих металлических порошков.

Задачей, на решение которой направлено изобретение, является упрощение технологии получения износостойкого композиционного материала на основе карбида титана.

Поставленная задача решается за счет того, что в способе получения износостойкого композиционного материала, включающем прессование шихты, содержащей порошки карбида титана и чугуна, и последующее спекание, особенностью является то, что в качестве чугуна используют серый чугун, а в шихту дополнительно вводят порошок карбида хрома при следующем соотношении компонентов, мас. %: карбид хрома - 8-10; порошок серого чугуна - 50-52; карбид титана - остальное.

Предлагаемый способ получения износостойкого композиционного материала на основе карбида титана включает прессование исходной шихты и последующее спекание, причем перед прессованием в шихту вводят порошок серого чугуна и карбид хрома. Вместо порошков легированных сталей в шихту вводят дешевые легкоплавные порошки серого чугуна 50-52%, которые получают измельчением отходов этого материала при обработке деталей резанием, а для обеспечения износостойкости карбидочугуна в прессовку вводят порошок карбида хрома 8-10%, который способствует отбеливанию серого чугуна в период спекания.

Пример осуществления способа.

Порошки исходных материалов смешивают в смесителе типа "пьяная бочка", прессуют в брикеты, полученные прессовки помещают в графитовый контейнер, засыпают порошком графита и глинозема, спекают при температуре 1450-1470oС в течение 30 мин.

На фиг. 1 показана микроструктура композиционного материала состава 40% карбида титана и 60% серого чугуна после спекания, а на фиг.2 - микроструктура композиционного материала состава 40% карбида титана, 10% карбида хрома и 50% серого чугуна. Микроструктура композиционного материала состава TiC-СЧ включает три структурные составляющие: эвтектику (микротвердость 9-12 ГПа), сорбитообразный перлит (микротвердость 4-5 ГПа) и включения графита. Композит состава TiC-Cr3С2-СЧ состоит из двух структурных составляющих: эвтектики (микротвердость 19-23 ГПа) и карбида титана в белом чугуне (микротвердость 21-24 ГПа). Таким образом, присутствие в составе карбидочугуна карбида хрома значительно увеличивает микротвердость и, следовательно, износостойкость составляющих его структур.

В таблице приведены некоторые физико-механические свойства прессовок различного состава после спекания.

Как видно из таблицы, для получения конструкционных износостойких деталей из композиционных материалов состава TiC-СЧ в шихту следует добавлять 8-10 мас.% карбида хрома (Сr3С2) при содержании серого чугуна 50-52 мас.%.

Испытания показали, что стойкость фильер, используемых в станках для правки и резки арматурной проволоки, из карбидочугуна состава TiC-Сr3С2-СЧ оказалась в 50-60 раз больше стойкости аналогичных фильер из закаленной стали 45.

Класс C22C1/04 порошковой металлургией

способ получения алюминиевого композиционного материала с ультрамелкозернистой структурой -  патент 2529609 (27.09.2014)
способ приготовления твердосплавной шихты с упрочняющими частицами наноразмера -  патент 2525192 (10.08.2014)
порошковый износо- корозионно-стойкий материал на основе железа -  патент 2523648 (20.07.2014)
способ получения многослойного композита на основе ниобия и алюминия с использованием комбинированной механической обработки -  патент 2521945 (10.07.2014)
жаропрочный порошковый сплав на основе никеля, стойкий к сульфидной коррозии и изделие, изготовленное из него -  патент 2516681 (20.05.2014)
способ испытания на сульфидную коррозию жаропрочных порошковых никелевых сплавов -  патент 2516271 (20.05.2014)
способ получения изделий из сложнолегированных порошковых жаропрочных никелевых сплавов -  патент 2516267 (20.05.2014)
способ изготовления порошкового композита сu-cd/nb для электроконтактного применения -  патент 2516236 (20.05.2014)
способ получения порошков сплавов на основе титана, циркония и гафния, легированных элементами ni, cu, ta, w, re, os и ir -  патент 2507034 (20.02.2014)
способы производства нефтепромысловых разлагаемых сплавов и соответствующих продуктов -  патент 2501873 (20.12.2013)

Класс C22C29/10 на основе карбидов титана

Класс C22C33/02 порошковой металлургией 

композиция, улучшающая обрабатываемость резанием -  патент 2529128 (27.09.2014)
способ получения диффузионно-легированного порошка железа или порошка на основе железа, диффузионно-легированный порошок, композиция, включающая диффузионно-легированный порошок, и прессованная и спеченная деталь, изготовленная из упомянутой композиции -  патент 2524510 (27.07.2014)
порошковый износо- корозионно-стойкий материал на основе железа -  патент 2523648 (20.07.2014)
способ получения дисперсноупрочненной высокоазотистой аустенитной порошковой стали с нанокристаллической структурой -  патент 2513058 (20.04.2014)
способ получения беспористого карбидочугуна для изготовления выглаживателей -  патент 2511226 (10.04.2014)
смазка для композиций порошковой металлургии -  патент 2510707 (10.04.2014)
спеченный материал для сильноточного скользящего электроконтакта -  патент 2506334 (10.02.2014)
способ изготовления стали с упрочняющими наночастицами -  патент 2493282 (20.09.2013)
низколегированный стальной порошок -  патент 2490353 (20.08.2013)
порошок на основе железа и его состав -  патент 2490352 (20.08.2013)

Класс B22F3/12 уплотнение и спекание

Наверх