способ вакуумного ионно-плазменного нанесения покрытий на подложку
Классы МПК: | C23C14/34 распыление металлов C23C14/02 предварительная обработка покрываемого материала |
Автор(ы): | Голощапов Ф.А., Кузнецов И.А., Петров В.П., Пестов Ю.А., Семенов В.Н., Деркач Г.Г., Додонов А.И. |
Патентообладатель(и): | ОАО "Научно-производственное объединение энергетического машиностроения им. акад. В.П.Глушко" |
Приоритеты: |
подача заявки:
2000-04-20 публикация патента:
10.11.2002 |
Изобретение может быть использовано при изготовлении конструкций, работающих в энергетических установках при экстремальных условиях. Способ включает создание разности электрических потенциалов между подложкой и катодом и очистку поверхности подложки потоком ионов, снижение разности потенциалов и нанесение покрытия, проведение отжига покрытия путем повышения разности потенциалов, при этом ионный поток и поток испаряющегося материала, идущий от катода к подложке при очистке, экранируют, очистку проводят ионами инертного газа, после очистки экраны отводят и наносят покрытие с последующим отжигом неоднократно до требуемой толщины. Изобретение направлено на повышение плотности покрытия, прочности сцепления с подложкой и однородности по толщине. 7 з.п.ф-лы, 1 ил.
Рисунок 1
Формула изобретения
1. Способ вакуумного ионно-плазменного нанесения покрытий на подложку в среде инертного газа, включающий создание разности электрических потенциалов между подложкой и катодом и очистку поверхности подложки потоком ионов, снижение разности потенциалов и нанесение покрытия, проведение отжига покрытия путем повышения разности потенциалов, отличающийся тем, что ионный поток и поток испаряющегося материала, идущий от катода к подложке, экранируют, очистку проводят ионами инертного газа, после очистки экраны отводят и наносят покрытие с последующим отжигом неоднократно до требуемой толщины. 2. Способ по п. 1, отличающийся тем, что подложка выполнена из высоколегированного сплава на никелевой основе. 3. Способ по п. 1 или 2, отличающийся тем, что в качестве материала катода используют медь. 4. Способ по любому из пп. 1-3, отличающийся тем, что в качестве инертного газа используют аргон. 5. Способ по любому из пп. 1-4, отличающийся тем, что для подложек сложной конфигурации очистку поверхности, нанесение покрытия и отжиг осуществляют при вращении подложки. 6. Способ по любому из пп. 1-5, отличающийся тем, что очистку поверхности подложки проводят при разности электрических потенциалов между катодом и подложкой 1000-1500 В при вакууме в камере 5

Описание изобретения к патенту
Изобретение относится к технологии получения стойких в агрессивных средах покрытий на деталях преимущественно сложной конфигурации и выполненных из высоколегированных сплавов, содержащих легко испаряющиеся компоненты, и может использоваться при изготовлении конструкций, работающих в энергетических установках при экстремальных условиях. Конструкции, применяемые в энергетических установках, например ротора, для успешной работы в экстремальных условиях должны быть защищены от воздействия агрессивной среды покрытиями, обладающими высокой коррозионной стойкостью, повышенной степенью сцепления с подложкой и толщиной слоя не менее 100 мкм. Наиболее приемлемым для получения таких покрытий является способ ионно-плазменного осаждения, так называемая конденсация с ионной бомбардировкой подложки, поскольку позволяет получать относительно плотные и равномерные по толщине покрытия. Известен способ ионно-плазменного нанесения покрытий, включающий испарение в вакууме катода, выполненного из материала покрытия, под воздействием низковольтовой электродуги, при котором в камере образуется плазменный поток, содержащий ионы инертного газа, ионы и атомы материала покрытия, создание между катодом и подложкой напряжения, обеспечивающего ускорение в электрическом поле заряженных частиц плазмы и движение их к подложке, образуя на ее поверхности тонкий слой покрытия (см. "Справочник оператора установок по нанесению покрытий в вакууме" М., Машиностроение, 1991, стр. 79-83). Ускорение частиц плазменного потока создается за счет увеличения напряжения между катодом и подложкой, при этом происходит ионная бомбардировка поверхности подложки, приводящая к ее очистке, а также к осаждению частиц покрытия на ее разогретой поверхности. Создание слоя покрытия протекает при небольшом напряжении между катодом и подложкой. Были получены на стальных деталях слои, например, карбида титана толщиной до 30 мкм. Однако при использовании указанного способа покрытия толщиной слоя более 100 мкм имеют недостаточную плотность и адгезию к поверхности подложки, что не позволяет применить их в энергетических установках. Известен способ ионно-плазменного нанесения покрытий на стальные детали в вакуумной камере в тлеющем разряде инертного газа, при котором после формирования плазменного потока проводят ионную бомбардировку поверхности подложки ионами покрываемого материала с энергией порядка 20 кэВ, сообщенной им электрическим полем большого напряжения, в результате чего происходит как очистка поверхности подложки, так и внедрение в нее материала покрытия. После снижения напряжения между катодом и подложкой проводят нанесение покрытия на ее поверхность материала покрытия, при этом внедренные атомы сцепляются с этим материалом, что способствует повышению адгезии покрытия к детали. Напыленные детали, не вынимая из камеры, подвергают термическому отжигу при температуре ниже температуры плавления материалов подложки и покрытия (см. авторское свидетельство СССР 738424, С 23 С 14/48). Данный способ позволяет достичь диффузионного сцепления покрытия с подложкой при нанесении относительно толстых слоев. Однако известный способ не позволяет использовать в качестве подложки деталей, выполненных из высоколегированных сплавов, содержащих такие элементы, как алюминий, титан, вольфрам, молибден, ниобий, поскольку плазменный поток ионов с энергией в 20 кэВ, внедряясь в подложку, селективно выбивает с поверхности атомы компонентов сплава и в первую очередь атомы с меньшей энергией связи в кристаллической решетке материала подложки. Атомы с большей энергией связи, оставшиеся на поверхности подложки, приходят в активное состояние и при достаточно высоком сродстве их к остаточным в камере газам способны образовать химические соединения, например окислы, нитриды. В результате поверхность подложки из высоколегированного сплава насыщается высокотемпературными соединениями, имеющими рыхлую структуру в виде мелкодисперсных частиц. Кроме того, содержащиеся в плазменном потоке атомы катода в процессе ионной очистки закрывают часть поверхности подложки, оставляя ее неочищенной от окислов и других трудно удаляемых загрязнений. Эти обстоятельства не позволяют получить покрытие с прочным сцеплением по всей поверхности подложки, в особенности имеющей сложную конфигурацию. Задача изобретения - дальнейшее совершенствование технологического процесса ионно-плазменного нанесения покрытий на деталях, который обеспечил бы повышение плотности и равномерности распределения по всей поверхности детали слоев покрытия толщиной 100 мкм с высокой адгезией покрытия. Задача решена за счет того, что в способе вакуумного ионно-плазменного нанесения покрытий на подложку в среде инертного газа, включающем создание разности электрических потенциалов между подложкой и катодом и очистку поверхности подложки потоком ионов, снижение разности потенциалов и нанесение покрытия, проведение отжига покрытия путем повышения разности потенциалов, ионный поток и поток испаряющегося материала, идущий от катода к подложке, экранируют, очистку подложки проводят ионами инертного газа, после очистки экраны отводят и наносят покрытие с последующим отжигом неоднократно до требуемой толщины. Другими отличиями является то, что- экранирование ионного потока и потока испаряющегося материала прекращают после завершения процесса очистки поверхности подложки;
- подложка выполнена из высоколегированного сплава на никелевой основе;
- в качестве материала катода используют никель;
- в качестве инертного газа используют аргон;
- для подложек сложной конфигурации очистку поверхности, нанесение покрытия и отжиг осуществляют при вращении подложки;
- очистку поверхности подложки проводят при напряжении между катодом и подложкой 1000-1500 В при разрежении в камере 5


- нанесение покрытия на подложку проводят при напряжении 100 200 В между ней и катодом;
- отжиги слоев покрытия проводят при напряжении 1250 - 1500 В между подложкой и катодом. Технический результат - повышение плотности покрытия, степени его равномерности по толщине слоя более 100 мкм, а также прочности сцепления с подложкой, которая может быть выполнена из высоколегированного сплава, содержащего легко испаряющиеся компоненты, и имеющей сложную конфигурацию. Предложенный способ осуществляют следующим образом. В камере создают высокий вакуум порядка 1









Класс C23C14/34 распыление металлов
Класс C23C14/02 предварительная обработка покрываемого материала