двухслойная коррозионно-стойкая сталь
Классы МПК: | C22C38/50 с титаном или цирконием C22C38/58 с более 1,5 % марганца по массе B32B15/18 содержащие чугун или сталь |
Автор(ы): | Карзов Г.П., Марков В.Г., Яковлев В.А., Драгунов Ю.Г., Степанов В.С., Третьяков Н.В. |
Патентообладатель(и): | Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей", Государственное предприятие "Опытное конструкторское бюро "Гидропресс" |
Приоритеты: |
подача заявки:
2001-07-27 публикация патента:
20.06.2003 |
Изобретение относится к металлургии сложнолегированных сталей, а именно к двухслойным коррозионно-стойким сталям, используемым в ядерной энергетике при изготовлении теплообменного оборудования. Техническим результатом изобретения является обеспечение коррозионной стойкости двухслойной стали в потоке жидкометаллического теплоносителя на основе свинца или сплава свинца и висмута, а также повышение прочности и стойкости против коррозионного растрескивания в пароводяной среде при 500oС. Предложена сталь, состоящая из основного и плакирующего слоев, причем основной слой, содержащий углерод, кремний, марганец, хром, никель, молибден и железо, дополнительно содержит титан при следующем соотношении компонентов, мас.%:
Углерод - 0,005-0,04
Кремний - 2,20-2,80
Марганец - 0,50-1,00
Хром - 14,0-15,5
Никель - 10,5-12,5
Молибден - 0,8-1,2
Титан - 0,08-0,20
Железо - Остальное
а плакирующий слой, содержащий углерод, кремний, марганец, хром, никель, молибден, титан, медь и железо, дополнительно содержит ниобий при следующем соотношении компонентов, мас.%:
Углерод - 0,005-0,03
Кремний - 0,05-0,35
Марганец - 1,30-1,17
Хром - 20,0-22,0
Никель - 31,5-33,0
Молибден - 3,0-4,0
Титан - 0,05-0,50
Медь - 0,01-0,15
Ниобий - 0,90-1,20
Железо - Остальное
при этом (Nb+2Ti)/C35 и толщина плакирующего слоя составляет 0,20-0,50 от общей толщины стали. 4 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4
Углерод - 0,005-0,04
Кремний - 2,20-2,80
Марганец - 0,50-1,00
Хром - 14,0-15,5
Никель - 10,5-12,5
Молибден - 0,8-1,2
Титан - 0,08-0,20
Железо - Остальное
а плакирующий слой, содержащий углерод, кремний, марганец, хром, никель, молибден, титан, медь и железо, дополнительно содержит ниобий при следующем соотношении компонентов, мас.%:
Углерод - 0,005-0,03
Кремний - 0,05-0,35
Марганец - 1,30-1,17
Хром - 20,0-22,0
Никель - 31,5-33,0
Молибден - 3,0-4,0
Титан - 0,05-0,50
Медь - 0,01-0,15
Ниобий - 0,90-1,20
Железо - Остальное
при этом (Nb+2Ti)/C35 и толщина плакирующего слоя составляет 0,20-0,50 от общей толщины стали. 4 табл.
Формула изобретения
Двухслойная коррозионно-стойкая сталь, состоящая из основного и плакирующего слоев, отличающаяся тем, что основной слой стали, содержащий углерод, кремний, марганец, хром, никель, молибден и железо, дополнительно содержит титан при следующем соотношении компонентов, мас.%:Углерод - 0,005-0,04
Кремний - 2,20-2,80
Марганец - 0,50-1,00
Хром - 14,0-15,5
Никель - 10,5-12,5
Молибден - 0,8-1,2
Титан - 0,08-0,20
Железо - Остальное
а плакирующий слой стали, содержащий углерод, кремний, марганец, хром, никель, молибден, титан, медь и железо, дополнительно содержит ниобий при следующем соотношении компонентов, мас.%:
Углерод - 0,005-0,03
Кремний - 0,05-0,35
Марганец - 1,30-1,70
Хром - 20,0-22,0
Никель - 31,5-33,0
Молибден - 3,0-4,0
Титан - 0,05-0,50
Медь - 0,01-0,15
Ниобий - 0,90-1,20
Железо - Остальное
при этом (Nb+2Ti)/C35 и толщина плакирующего слоя составляет 0,20-0,50 от общей толщины двухслойной стали.
Описание изобретения к патенту
Изобретение относится к металлургии легированных сталей, а именно к двухслойным коррозионно-стойким сталям, используемым в ядерной энергетике, в частности, для изготовления теплообменного оборудования. Одной из областей использования этой стали является изготовление парогенераторных труб, работающих при температуре 500oС в контакте с жидкометаллическим теплоносителем на основе свинца. Известны применяемые в настоящее время для изготовления парогенераторных труб стали марок 10Х2М1, 05X12H2M, 15Х1СМФБ, 03Х11Н3С2М и др. Основным их недостатком является низкая коррозионная стойкость при температуре 500oС в среде вода-пар при тепловых потоках 1000 кВт/м2. Использование высоконикелевых сталей типа 03Х21H32М3Б показало их удовлетворительную стойкость в среде вода-пар при 500oС, но совершенно неудовлетворительную коррозионную стойкость в контакте с жидкометаллическим теплоносителем на основе свинца при 500oС. Выходом из этого положения является использование биметаллических труб, обеспечивающих коррозионную стойкость одновременно при работе в контакте как с жидкометаллическим теплоносителем на основе свинца, так и в пароводяной среде при температуре 500oС и тепловых потоках 1000 кВт/м2. Известны применяемые в настоящее время двухслойные стали, поставляемые по ГОСТ 10885-85, с основным слоем из углеродистой или низколегированной стали и с защитным слоем из коррозионно-стойких сталей или сплавов. По этому стандарту поставляются листы из двухслойной стали толщиной от 4 до 160 мм при соотношении толщин плакирующего и основного слоев в пределах 0,07-0,37 и по ГОСТ 22786-77 "Трубы биметаллические". Основным недостатком указанных двухслойных сталей является их низкая коррозийная стойкость при работе во внутриреакторном теплообменном оборудовании в контакте с жидкометаллическими теплоносителями на основе свинца при высокой температуре. Наиболее близкой по составу ингредиентов является двухслойная сталь 10Х2М1+06ХН28МДТ по ГОСТ 10885-85. Основной слой этой стали содержит элементы при следующем соотношении, мас.%:Углерод - 0,08-0,12
Кремний - 0,17-0,37
Марганец - 0,30-0,60
Хром - 2,0-2,5
Никель - 0,5
Молибден - 0,70-1,10
Железо - Остальное
а плакирующий слой содержит элементы при следующем соотношении, мас.%:
Углерод - 0,06
Кремний - 0,8
Марганец - 0,8
Хром - 22,0-25,0
Никель - 26,0-29,0
Молибден - 2,50-3,00
Титан - 0,5-0,9
Медь - 2,5-3,0
Сера - 0,020
Железо - Остальное
Указанная двухслойная сталь обладает высокими механическими и коррозионными свойствами при работе в особоагрессивных химических средах типа растворов неорганических кислот при температурах от комнатной до температуры кипения. Однако известная двухслойная сталь имеет низкую коррозионную стойкость в потоке свинцового теплоносителя при температуре 500oС, а также недостаточную длительную прочность и стойкость против хлоридного коррозионного растрескивания при 500oС в воде и паре высоких параметров. Техническим результатом изобретения является обеспечение коррозионной стойкости двухслойной стали в потоке жидкометаллического теплоносителя свинца или сплава свинца и висмута, а также повышение длительной прочности и стойкости против коррозионного растрескивания при температуре 500oС в пароводяной среде. Технический результат достигается за счет того, что для основного слоя, работающего в потоке жидкометаллического теплоносителя свинца или сплава свинца и висмута, предложена сталь, содержащая углерод, кремний, марганец, хром, никель, молибден и железо, дополнительно легированная титаном при следующем соотношении компонентов, мас.%:
Углерод - 0,005-0,04
Кремний - 2,2-2,8
Марганец - 0,5-1,0
Хром - 14,0-15,5
Никель - 10,5-12,5
Молибден - 0,8-1,2
Титан - 0,08-0,20
Железо - Остальное
Введение регламентированного количества титана и снижение содержания углерода способствует стабильности механических свойств стали при тепловых выдержках при температурах до 500oС за счет уменьшения выделения карбидов хрома типа Ме23С6. Легирование стали основного слоя кремнием в количестве более 2% позволяет обеспечить коррозионную стойкость в потоке свинцового теплоносителя с контролируемым содержанием кислорода благодаря образованию защитных оксидных пленок, в том числе оксидов кремния, стойких в потоке теплоносителя. Увеличение содержания никеля и хрома обеспечивает аустенитную структуру металлу основного слоя, что способствует повышению длительной прочности и коррозионной стойкости стали в теплоносителе. Для обеспечения коррозионной стойкости в пароводяной среде стали плакирующего слоя, содержащей углерод, кремний, марганец, хром, никель, молибден, титан, медь и железо, в нее дополнительно введен ниобий при следующем соотношении элементов, мас.%:
Углерод - 0,005-0,03
Кремний - 0,05-0,35
Марганец - 1,30-1,70
Хром - 20,0-22,0
Никель - 31,5-33,0
Титан - 0,05-0,5
Медь - 0,01-0,15
Молибден - 3,0-4,0
Ниобий - 0,9-1,2
Железо - Остальное
при этом отношение суммарного содержания ниобия и двухкратного количества титана к содержанию углерода должно быть больше или равно 35(Nb+2Ti)/С35. Дополнительное введение ниобия, регламентированного количества титана и обеспечение соотношения элементов (Nb+2Ti)/С35 обеспечивает стойкость стали к межкристаллитной коррозии в воде и паре высоких параметров. Легирование стали плакирующего слоя ниобием, который не выгорает при сварке, обеспечивает стойкость к межкристаллитной коррозии плакирующего слоя и сварных соединений тонкостенных труб теплообменного оборудования АЭС. Повышение содержания никеля в стали увеличивает ее стойкость к хлоридному коррозионному растрескиванию, что важно в условиях накопления хлоридов в зоне испарения теплообменников. Снижение содержания меди вызвано необходимостью повышения стойкости плакирующего слоя к питтинговой коррозии. Легирование медью уменьшает скорость общей коррозии в кислых средах (растворах кислот). Однако наличие высокой концентрации меди в высоконикелевых аустенитных сталях уменьшает их стойкость к питтинговой коррозии в нейтральных хлоридных средах, характерных для теплообменного оборудования. Снижение содержания кремния в стали, а также увеличение содержания марганца и молибдена обусловлено необходимостью улучшения технологичности высоконикелевой стали, повышая ее стойкость против образования горячих трещин при сварке. Появление горячих трещин вызвано образованием легкоплавких эвтектик, преимущественно соединений кремния. Снижение содержания кремния, а также повышение содержания марганца и молибдена подавляет образование эвтектик. Толщина плакирующего слоя 0,20-0,50 от общей толщины стенки обеспечивает прочностные и коррозионные свойства биметаллических труб. Авторами выплавлены в открытой индукционной печи по три 100-килограммовых слитка заявляемых марок стали и по одному такому же слитку известных марок стали. Далее слитки были прокованы на заготовки. Из заявляемых марок стали были изготовлены составные трубные заготовки из основной и плакирующей марок стали, а затем прокатаны методом горячей и холодной деформации на биметаллические трубы с наружным диаметром 16 мм и толщиной стенки 3,0 мм, при этом толщина плакирующего слоя составляла от 10 до 50% общей толщины стенки биметаллической трубы. А из известных марок стали были изготовлены монометаллические трубы. Испытание моделей парогенераторных труб проводили на стенде при тепловом потоке на трубах 1500 кВт/м2 в течение 2000 ч. Состояние плакирующего слоя оценивали путем визуального осмотра и металлографического анализа. Сопротивляемость межкристаллитной коррозии определяли на образцах из высоконикелевой стали в состоянии после длительного старения при температуре 550oС по методике ГОСТ 6034-84, метод AM. Испытания на длительную прочность и коррозию в воде и паре высоких параметров проводились на образцах из стали плакирующего слоя, термообработанных по режиму: аустенизация при 1050oС с последующим охлаждением на воздухе. Испытания на длительную прочность проводили на установке АИМА-5-2 при температуре 500oС. Испытания на коррозионное растрескивание (КР) проводили в насыщенном водяном паре над водой, содержащей 1 г/л хлор-ионов при температуре 350oС и напряжении, равном 1,20,2.
Стендовые коррозионные испытания металла основного слоя проводили в потоке жидкого свинца при температуре 500oС и содержании кислорода в теплоносителе 510-6%. Результаты испытаний представлены в табл. 4. Химический состав заявляемой и известной марок стали для основного и плакирующего слоев приведены в табл. 1 и 3 соответственно, результаты испытаний этих слоев - в табл. 2 и 4 соответственно. Как видно из табл. 2, результаты испытаний подтверждают, что заявляемая марка стали превосходит известную по длительной прочности и коррозионной стойкости в потоке жидкого свинца при 500oС. Как видно из табл. 4, результаты испытаний подтверждают, что заявляемая марка стали превосходит известную по длительной прочности и коррозионной стойкости в условиях эксплуатации теплообменного оборудования АЭУ с жидкометаллическим носителем на основе свинца. Ожидаемый технико-экономический эффект от использования предлагаемой двухслойной стали выразится в увеличении срока службы и надежности биметаллических труб парогенератора и пароперегревателя атомных энергетических установок за счет повышения коррозионной стойкости, длительной прочности и стойкости против коррозионного растрескивания при работе их в контакте одновременно как с пароводяной средой, так и с жидкометаллическим теплоносителем на основе свинца или сплава свинца и висмута при температуре 500oС.
Класс C22C38/50 с титаном или цирконием
Класс C22C38/58 с более 1,5 % марганца по массе
Класс B32B15/18 содержащие чугун или сталь