способ диагностики кардиологических заболеваний с помощью фонокардиографии
Классы МПК: | A61B7/00 Приборы для аускультации (выслушивания) A61B5/02 измерение пульса, частоты сердечных сокращений, давления или тока крови; одновременное определение пульса (частоты сердечных сокращений) и кровяного давления; оценка состояния сердечно-сосудистой системы, не отнесенная к другим рубрикам, например использование способов и устройств, рассматриваемых в этой группе в сочетании с электрокардиографией; сердечные катетеры для измерения кровяного давления |
Автор(ы): | Бабунц И.В. (RU) |
Патентообладатель(и): | Бабунц Игорь Вячеславович (RU) |
Приоритеты: |
подача заявки:
2001-05-22 публикация патента:
27.05.2004 |
Изобретение относится к медицине, функциональной диагностике. Одновременно регистрируют звуковую деятельность внутренних органов с помощью 4 и более микрофонов, расположенных на поверхности тела пациента. Сравнивают разницу во времени между приходом звуковых волн от источника звука в разные точки ее регистрации. Способ позволяет определить пространственную локализацию источника звука и обнаружить кардиологические заболевания. 1 ил.
Рисунок 1
Формула изобретения
Способ диагностики кардиологических заболеваний с помощью фонокардиографии, включающий регистрацию звуковой деятельности сердца, отличающийся тем, что проводят фонокардиографию четырьмя или более высокоточными микрофонами, расположенными на поверхности тела пациента, проводят аналого-цифровое преобразование и последующий анализ полученных результатов с помощью ЭВМ, при этом оценивают разницу времени между приходом звуковых волн от источника аускультативного феномена в разные точки регистрации звуковой деятельности.Описание изобретения к патенту
Изобретение относится к области медицины, а именно к функциональной диагностике.В настоящее время в медицине применяются разнообразные устройства для регистрации звуковой деятельности внутренних органов. Среди них можно выделить как отечественные модели - двухканальный ФЭКП-2 (Бала Ю.М., Глотов Н.Ф., Фуки В.Б., Никитин А.В. Атлас практической фонокардиографии. - Воронеж, 1979), шестиканальный блочный "физиограф" (Минкин Р.Б., Павлов Ю.Д. Электрокардиография и фонокардиография. - Л.: Медицина, 1980), так и импортные - шестиканальный электрокардиограф со встроенной фонокардиографической приставкой 6 NEK-301 (ГДР), трехканальный векторэлектрокардиограф "визокард мультивектор" (Австрия), четырехканальный электрокардиограф "Мингограф-кардирекс 42Б" (Швеция) (Бала Ю.М., Глотов Н.Ф., Фуки В.Б., Никитин А.В. Атлас практической фонокардиографии. - Воронеж, 1979) и другие модели.Особое место занимают созданные в последние годы компьютерные фонокардиографы с синхронизирующим ЭКГ-каналом - автоматизированный кардиологический комплекс "Polysystem-4", компьютерная диагностическая система Валента (Эльянов М. Медицинские информационные технологии. Выпуск 1. - М., 2000) и другие.Наиболее близким по технической сущности к предлагаемому является традиционный способ регистрации звуковой деятельности с помощью обычных или компьютеризированных систем. Регистрация звуковой деятельности осуществляется последовательной перестановкой микрофона в разные точки, применяемые для звукозаписи (Бала Ю.М., Глотов Н.Ф., Фуки В.Б., Никитин А.В. Атлас практической фонокардиографии. - Воронеж, 1979).Независимо от метода визуализации звуковой деятельности внутренних органов, применяемого в конкретной диагностической системе, конечным результатом является сумма графиков, отражающих звуковую деятельность сердца на различных частотах, но зарегистрированную в одной из точек аускультации с помощью одного микрофона.Для анализа звуковой деятельности, зарегистрированной традиционным способом, врач сравнивает результаты регистрации звуковой деятельности сердца в различных точках аускультации, визуально оценивая графики, и стараясь представить себе, какой именно отдел внутренних органов поражен.Однако применяемый способ влечет сложность топической диагностики, поскольку с помощью звукозаписей врач может судить о локализации патологии приблизительно, ориентируясь на изменение звуковой деятельности, связанное с ослаблением звуков, проходящих через ткани организма. Это ослабление выявляется в разных точках регистрации звуковой деятельности и позволяет определить лишь факт отдаленного расположения источника звука к точкам регистрации звуковой деятельности, в которых наблюдается уменьшение амплитуды аускультативного феномена и наоборот, факт обнаружения наибольшей амплитуды аускультативного феномена в одной из точек регистрации говорит о ее максимальной приближенности к источнику аускультативного симптома. Учитывая, что звуковая деятельность сердца изучается последовательной перестановкой микрофона в разные точки аускультации и сравниваются разные сердечные циклы, сравнение амплитудно-частотных характеристик полученных фонокардиограмм для точной диагностики источника аускультативного феномена невозможно.Поставлена задача точной топической диагностики звуковой деятельности сердца и других внутренних органов.Поставленная задача достигается при одновременной регистрации звуковой деятельности внутренних органов с помощью нескольких (4 или более) микрофонов, расположенных на поверхности тела пациента, и последующем математическом анализе полученных результатов с помощью ЭВМ. Сравнивается разница времени между приходом звуковых волн от источника аускультативного феномена в разные точки регистрации звуковой деятельности для определения пространственной локализации источника звука.Способ диагностики кардиологических заболеваний с помощью трехмерной фонокардиографии осуществляется следующим образом: у пациента одновременно в различных точках аускультации с помощью специальных микрофонов регистрируется звуковая деятельность исследуемого органа, проводится высокоточное аналогово-цифровое преобразование звукового сигнала и передача информации в ЭВМ для последующей обработки и визуализации результатов.Аппаратно-программный комплекс, выполняющий поставленную задачу, должен состоять из 5 частей: 4 или более высокочувствительных микрофонов, высокоточного аналогово-цифрового преобразователя, высокоскоростной шины для передачи оцифрованного сигнала в ЭВМ и высокопроизводительного компьютера, на котором установлена специально созданная программа для диагностики звуковой деятельности внутренних органов.Для точного определения в пространстве источника звуковой деятельности необходимо располагать информацией по меньшей мере с 4 микрофонов. Согласно закону распространения звука в пространстве, при использовании одного микрофона и получении звукового сигнала от источника звуковой деятельности, даже если известно расстояние от микрофона до источника звука, он может располагаться на любой точке геометрической фигуры - сферы, в центре которой располагается микрофон. При использовании двух микрофонов вероятными точками для каждого микрофона будут точки, расположенные на окружности, полученной при взаимном пересечении двух сфер, соответствующих возможным точкам для каждого из микрофонов. При использовании трех микрофонов и анализе разницы времени прихода звуковой деятельности в три микрофона, вероятными точками будут две, получаемые при пересечении окружности, полученной взаимным пересечением двух сфер от первых двух микрофонов сферой, соответствующей подмножеству точек третьего микрофона.Именно поэтому для точной топической диагностики источника звука в пространстве необходимо применение не менее четырех микрофонов.На чертеже представлена схема одной из методик расчета пространственного расположения источника звука при помощи четырех микрофонов.Точки расположения микрофонов принимаем за Ml, М2, М3 и М4; среднюю скорость распространения звука в тканях за Vcp; точку, соответствующую источнику звука - З; время задержки звуковой волны при достижении звука точек М2, М3 и М4 по сравнению с приходом волны в точку Ml принимаем за Т2, Т3 и Т4; точку, соответствующую приходу звуковой волны к самому близкому микрофону Ml, принимаем за R1; точки, которые проходит звуковая волна в момент достижения самого близкого микрофона M1 на отрезках, соединяющих источник шума с остальными микрофонами, принимаем за R2, R3 и R4.Исходные координаты микрофонов (в сантиметрах):M1 - (х - 0, у - 0, z - 0) (принимается за исходную точку отсчета)М2 - (х - 10, у - 0, z - 0) (в исследовании эти координаты вычисляются исходя из реального расстояния между микрофонами)М3 - (х - 0, у - 0, z - 10) (в исследовании эти координаты вычисляются исходя из реального расстояния между микрофонами)М4 - (х - 10, у - 0, z - 10) (в исследовании эти координаты вычисляются исходя из реального расстояния между микрофонами)В ходе измерения получаем:Сначала звуковая волна достигает точки M1, затем точек М2, М4, М3. По времени задержки звуковой волны Т2, Т4, Т3 и средней скорости распространения звука в тканях Vcp (вычисленной экспериментальным путем) можно определить пройденное расстояние:Расстояние М2 R2=Т2










Класс A61B7/00 Приборы для аускультации (выслушивания)
Класс A61B5/02 измерение пульса, частоты сердечных сокращений, давления или тока крови; одновременное определение пульса (частоты сердечных сокращений) и кровяного давления; оценка состояния сердечно-сосудистой системы, не отнесенная к другим рубрикам, например использование способов и устройств, рассматриваемых в этой группе в сочетании с электрокардиографией; сердечные катетеры для измерения кровяного давления