способ получения сложных полиэфиров для полиуретанов (варианты)

Классы МПК:C08G63/12 получаемые из поликарбоновых кислот и полиоксисоединений
Автор(ы):, , ,
Патентообладатель(и):ОАО "Казанский завод синтетического каучука" (RU)
Приоритеты:
подача заявки:
2004-07-28
публикация патента:

Изобретение относится к области получения сложных полиэфиров, которые применяются для получения полиуретанов. Техническая задача - упрощение способа получения сложных полиэфиров для полиуретанов. Предложен способ получения сложных полиэфиров поликонденсацией фталевого ангидрида и диэтиленгликоля (при молярном соотношении 1:(1,2-2,5) и температуре 205±5°С) или адипиновой кислоты и этиленгликоля (1:(1,5-1,6) и 195±5°С), или адипиновой кислоты, этиленгликоля и 1,4-бутандиола (1:0,78:0,42 и 200±5°С) до кислотного числа 35-42 мг·КОН/г, после чего в реакционную смесь вводят катализатор тетрабутоксититан и ведут вакуумную поликонденсацию до кислотного числа не более 1 мг·КОН/г.Предложенные способы требуют в 1,4-2 раза меньше времени, чем известные, и позволяют значительно уменьшить энергозатраты. 3 н.п. ф-лы, 1 табл.

Формула изобретения

1. Способ получения сложных полиэфиров для полиуретанов поликонденсацией кислородсодержащего соединения, диэтиленгликоля при температуре (205±5)°С, отличающийся тем, что в качестве кислородсодержащего соединения берут фталевый ангидрид при молярном соотношении фталевого ангидрида и диэтиленгликоля 1:(1,2-2,5) соответственно и проводят поликонденсацию до кислотного числа 35-42 мг·КОН/г, после чего в реакционную смесь вводят катализатор тетрабутоксититан в количестве 0,01-0,03% от массы фталевого ангидрида и ведут вакуумную поликонденсацию до кислотного числа не более 1,0 мг·КОН/г.

2. Способ получения сложных полиэфиров для полиуретанов поликонденсацией адипиновой кислоты и многоатомного спирта при температуре (195±5)°С, отличающийся тем, что в качестве многоатомного спирта берут этиленгликоль при молярном соотношении адипиновой кислоты и этиленгликоля 1:(1,5-1,6) соответственно и проводят поликонденсацию до кислотного числа 35-42 мг·КОН/г, после чего в реакционную смесь вводят катализатор тетрабутоксититан в количестве 0,0006-0,001% от массы адипиновой кислоты и ведут вакуумную поликонденсацию до кислотного числа не более 1 мг·КОН/г.

3. Способ получения сложных полиэфиров для полиуретанов поликонденсацией адипиновой кислоты и многоатомного спирта при температуре (200±5)°С, отличающийся тем, что в качестве многоатомного спирта берут этиленгликоль и 1,4-бутандиол при молярном соотношении адипиновой кислоты, этиленгликоля и 1,4-бутандиола 1:0,78:0,42 соответственно и проводят поликонденсацию до кислотного числа 35-42 мг·КОН/г, после чего в реакционную смесь вводят катализатор тетрабутоксититан в количестве 0,0006-0,001% от массы адипиновой кислоты и ведут вакуумную поликонденсацию до кислотного числа не более 1 мг·КОН/г.

Описание изобретения к патенту

Изобретение относится к области получения сложных полиэфиров, применяемых для получения полиуретанов.

Известен способ получения полиэфиров путем взаимодействия дикарбоновых кислот или их ангидридов, или смеси дикарбоновых кислот или их ангидридов с многоатомными спиртами или их смесями с одноатомными спиртами в присутствии каталитической системы, включающей титанорганический катализатор и промотирующую добавку - N-оксипиридин, при массовом соотношении титанорганического катализатора и N-оксипиридина (1-10000):1 соответственно, причем количество каталитической системы составляет 0,02-5,0 мас.% от массы реакционной смеси, см. SU Авторское свидетельство 1047920 А, МПК C 08 G 63/16, 1983.

Полиэфиры по известному способу предназначены для пластификации поливинилхлорида и не пригодны для получения полиуретанов.

Наиболее близким по технической сущности является способ получения сложных полиэфиров для полиуретанов поликонденсацией адипиновой кислоты, многоатомного спирта в присутствии титанорганического катализатора, в котором в качестве многоатомного спирта используют диэтиленгликоль и пентаэритрит, и процесс проводят при молярном соотношении пентаэритрита, адипиновой кислоты и диэтиленгликоля (1,0-1,3):(33,5-35):(35-37) соответственно, компоненты нагревают до 132±2°С, затем повышают температуру до 205±5°С и проводят конденсацию до кислотного числа 40 мг·КОН/г, при этой же температуре проводят вакуумную поликонденсацию в течение 24 часов до кислотного числа не более 1,5 мг·КОН/г и гидроксильного числа 60±3 мг·КОН/г.

Недостатком известного способа являются продолжительность процесса получения сложных полиэфиров и большие энергозатраты.

Задачей изобретения является упрощение способа получения сложных полиэфиров для полиуретанов.

Техническая задача решается способом получения сложных полиэфиров для полиуретанов поликонденсацией кислородсодержащего соединения, диэтиленгликоля при температуре 205±5°С, в котором в качестве кислородсодержащего соединения берут фталевый ангидрид при молярном соотношении фталевого ангидрида и диэтиленгликоля 1:(1,2-2,5) соответственно и проводят поликонденсацию до кислотного числа 35-42 мг·КОН/г, после чего в реакционную смесь вводят катализатор тетрабутоксититан в количестве 0,01-0,03% от массы фталевого ангидрида и ведут вакуумную поликонденсацию до кислотного числа не более 1,0 мг·КОН/г.

Техническая задача решается также способом получения сложных полиэфиров для полиуретанов поликонденсацией адипиновой кислоты и многоатомного спирта при температуре 195±5°С, в котором в качестве многоатомного спирта берут этиленгликоль при молярном соотношении адипиновой кислоты и этиленгликоля 1:(1,5-1,6) соответственно и проводят поликонденсацию до кислотного числа 35-42 мг·КОН/г, после чего в реакционную смесь вводят катализатор тетрабутоксититан в количестве 0,0006-0,001% от массы адипиновой кислоты и ведут вакуумную поликонденсацию до кислотного числа не более 1 мг·КОН/г.

Техническая задача решается также способом получения сложных полиэфиров для полиуретанов поликонденсацией адипиновой кислоты и многоатомного спирта при температуре 200±5°С, в котором в качестве многоатомного спирта берут этиленгликоль и 1,4-бутандиол при молярном соотношении адипиновой кислоты, этиленгликоля и 1,4-бутандиола 1:0,78:0,42 соответственно и проводят поликонденсацию до кислотного числа 35-42 мг·КОН/г, после чего в реакционную смесь вводят катализатор тетрабутоксититан в количестве 0,0006-0,001% от массы адипиновой кислоты и ведут вакуумную поликонденсацию до кислотного числа не более 1 мг·КОН/г.

Решение технической задачи позволяет упростить способ путем сокращения времени получения полиэфиров в 1,4-2 раза и при этом значительно уменьшить энергозатраты.

В качестве кислородсодержащих соединений используют фталевый ангидрид или адипиновую кислоту, в качестве многоатомных спиртов - этиленгликоль, диэтиленгликоль, 1,4-бутандиол. В качестве катализатора используют тетрабутоксититан.

Данное изобретение иллюстрируют следующие примеры конкретного выполнения.

По первому варианту:

Пример 1.

В колбу, снабженную мешалкой, барботером для инертного газа, колонкой-конденсатором насадочного типа, холодильником и термометром, загружают 521 г (3,52 моль) фталевого ангидрида и 932,8 г (8,8 моль) диэтиленгликоля, нагревают при атмосферном давлении до 205±5°С. Процесс поликонденсации ведут до кислотного числа 35 мг·КОН/г. Затем в реакционную смесь вводят катализатор - тетрабутоксититан в количестве 0,141 г, что составляет 0,01% от массы фталевого ангидрида. При этой же температуре проводят вакуумную поликонденсацию в течение 14 часов.

Выход полиэфира составляет 78% от суммы загруженных компонентов со следующими свойствами: кислотное число 1,0 мг·КОН/г; гидроксильное число 240 мг·КОН/г; вязкость при 25°С 8,5 Па·сек, массовая доля воды 0,015%. Внешний вид - вязкая однородная жидкость светло-желтого цвета.

Пример 2.

Способ осуществляют аналогично примеру 1 с той лишь разницей, что процесс поликонденсации при 205±5°С ведут до кислотного числа 42 мг·КОН/г и загружают 621 г (4,2 моль) фталевого ангидрида, 801 г (7,55 моль) диэтиленгликоля и 0,167 г тетрабутоксититана, что составляет 0,025% от массы фталевого ангидрида. Вакуумную поликонденсацию ведут в течение 14,5 часов.

Выход полиэфира составляет 87% от суммы загруженных компонентов со следующими свойствами: кислотное число 0,7 мг·КОН/г; гидроксильное число 200 мг·КОН/г; вязкость при 25°С 15 Па·сек, массовая доля воды 0,013%. Внешний вид - вязкая однородная жидкость светло-желтого цвета.

Пример 3.

Способ осуществляют аналогично примеру 1 с той лишь разницей, что процесс поликонденсации при 205±5°С ведут до кислотного числа 37 мг·КОН/г и загружают 621 г (4,2 моль) фталевого ангидрида, 534,2 г (5,0 моль) диэтиленгликоля и 0,167 г тетрабутоксититана, что составляет 0,03% от массы фталевого ангидрида. Вакуумную поликонденсацию ведут в течение 17 часов.

Выход полиэфира составляет 92% от суммы загруженных компонентов со следующими свойствами: кислотное число 0,6 мг·КОН/г; гидроксильное число 58 мг·КОН/г; массовая доля воды 0,003%. Внешний вид - твердое прозрачное вещество желтого цвета.

По второму варианту:

Пример 4.

В колбу, снабженную мешалкой, барботером для инертного газа, колонкой-конденсатором насадочного типа, холодильником и термометром, загружают 876 г (6 моль) адипиновой кислоты и 558 г (9 моль) этиленгликоля, нагревают при атмосферном давлении до 195±5°С. Процесс поликонденсации ведут до кислотного числа 35 мг·КОН/г. Затем в реакционную смесь вводят катализатор - тетрабутоксититан в количестве 0,0086 г, что составляет 0,0006% от массы адипиновой кислоты. При этой же температуре проводят вакуумную поликонденсацию в течение 12 часов.

Выход полиэфира составляет 77% от суммы загруженных компонентов со следующими свойствами: кислотное число 0,4 мг·КОН/г; гидроксильное число 120 мг·КОН/г; вязкость при 75°С 1,3 Па·сек, массовая доля воды 0,011%. Внешний вид - парафинообразное твердое вещество белого цвета.

Пример 5.

Способ осуществляют аналогично примеру 3 с той лишь разницей, что процесс поликонденсации при 195±5°С ведут до кислотного числа 42 мг·КОН/г и загружают 876 г (6 моль) адипиновой кислоты, 595 г (9,6 моль) этиленгликоля и 0,009 г тетрабутоксититана, что составляет 0,001% от массы адипиновой кислоты. Вакуумную поликонденсацию ведут в течение 11,5 часов.

Выход полиэфира составляет 75% от суммы загруженных компонентов со следующими свойствами: кислотное числа 0,54 мг·КОН/г; гидроксильное число 130 мг·КОН/г; вязкость при 75°С 1,2 Па·сек, массовая доля воды 0,013%. Внешний вид - парафинообразное твердое вещество белого цвета.

По третьему варианту:

Пример 6.

В колбу, снабженную мешалкой, барботером для инертного газа, колонкой-конденсатором насадочного типа, холодильником и термометром, загружают 876 г (6 моль) адипиновой кислоты, 290,2 г (4,6 моль) этиленгликоля, 226,8 г (2,52 моль) 1,4-бутандиола, нагревают при атмосферном давлении до 200±5°С. Процесс поликонденсации ведут до кислотного числа 35 мг·КОН/г. Затем в реакционную смесь вводят катализатор - тетрабутоксититан в количестве 0,013 г, что составляет 0,001% от массы адипиновой кислоты. При этой же температуре проводят вакуумную поликонденсацию в течение 16 часов.

Выход полиэфира составляет 82% от суммы загруженных компонентов со следующими свойствами: кислотное числа 0,4 мг·КОН/г; гидроксильное число 36,3 мг·КОН/г; вязкость при 75°С 1,5 Па·сек, массовая доля воды 0,005%. Внешний вид - вязкая однородная жидкость светло-желтого цвета.

Пример 7.

Способ осуществляют аналогично примеру 6 с той лишь разницей, что процесс поликонденсации при 200±5°С ведут до кислотного числа 42 мг·КОН/г и загружают 876 г (6 моль) адипиновой кислоты, 290,2 г (4,6 моль) этиленгликоля, 226,8 г (2,52 моль) 1,4-бутандиола, 0,005 г тетрабутоксититана, что составляет 0,0006% от массы адипиновой кислоты. Вакуумную поликонденсацию ведут в течение 17 часов.

Выход полиэфира составляет 82% от суммы загруженных компонентов со следующими свойствами: кислотное числа 0,6 мг·КОН/г; гидроксильное число 40 мг·КОН/г; вязкость при 75°С 1,4 Па·сек, массовая доля воды 0,005%. Внешний вид - вязкая однородная жидкость светло-желтого цвета.

Данные по примерам сведены в таблицу.

Как видно из примеров конкретного выполнения, заявляемый способ позволяет сократить время получения полиэфиров в 1,4-2 раза и в значительной мере уменьшить энергозатраты. Полиэфиры получают с высоким выходом от 75 до 92%. Полиуретаны на основе полиэфиров, полученных по первому варианту, обладают термостойкостью и пониженной горючестью.

Заявляемый объект прошел промышленную апробацию на ОАО «Казанский завод синтетического каучука» и подтвердил указанный положительный эффект.

Таблица

№ п/пИсходные реагенты Количество исходного реагента, г Молярное соотношение исходных реагентов Количество катализатора, мас.%Введение катализатораВремя синтеза, час Кислотное число/гидроксильное число мг КОН/г
1.Фталевый ангидрид 521   При кислотном  
 Диэтиленгликоль 932,81:2,5 0,01числе14 1,0/240
       35 мг·КОН/г   
2.Фталевый ангидрид 621   При кислотном   
 Диэтиленгликоль 8011:1,80,025 числе14,5 0,7/200
       42 мг·КОН/г   
3.Фталевый ангидрид 621   При кислотном   
 Диэтиленгликоль 5341:1,20,03 числе17 0,6/58
       37 мг·КОН/г   
4.Адипиновая кислота 876   При кислотном   
 Этиленгликоль 5581:1,50,0006 числе12 0,4/120
       35 мг·КОН/г   
5.Адипиновая кислота 876   При кислотном   
 Этиленгликоль 5951:1,60,001 числе11,5 0,54/130
       42 мг·КОН/г   
6.Адипиновая кислота 876   При кислотном   
 Этиленгликоль 290,2 0,001 числе16 0,4/36,3
  1,4-бутандиол226,8 1:0,78:0,42 35 мг·КОН/г  
7.Адипиновая кислота876   При кислотном   
 Этиленгликоль 290,2  0,0006числе17 0,6/40
  1,4-бутандиол226,8 1:0,78:0,42  42 мг·КОН/г   

Класс C08G63/12 получаемые из поликарбоновых кислот и полиоксисоединений

способ получения полиэфирполиолов с малым количеством отходов диоксана -  патент 2525391 (10.08.2014)
способ получения полимера -  патент 2494117 (27.09.2013)
катализатор поликонденсации для получения сложного полиэфира и способ получения сложного полиэфира с использованием катализатора поликонденсации -  патент 2418817 (20.05.2011)
водные полиуретановые дисперсии, полученные из гидроксиметилсодержащих полиэфирполиолов на основе сложного эфира, полученных из жирных кислот -  патент 2418814 (20.05.2011)
форполимеры, полученные из гидроксиметилсодержащих полиэфирполиолов на основе сложного эфира, полученных из жирных кислот -  патент 2418813 (20.05.2011)
пенополиуретаны, полученные из гидроксиметилсодержащих алкиловых эфиров жирных кислот -  патент 2417235 (27.04.2011)
полимерные полиолы и полимерные дисперсии, полученные из гидроксилсодержащих материалов на основе растительных масел -  патент 2412954 (27.02.2011)
способ этерификации многоатомных спиртов кислотами, замещенными третичными алкилами -  патент 2409551 (20.01.2011)
способ термической обработки полиэфирных гранул для получения частичной кристаллизации -  патент 2397993 (27.08.2010)
водное средство для покрытий, способ его приготовления, полученные из него покрытия и субстрат, снабженный этим покрытием -  патент 2373244 (20.11.2009)
Наверх