электролит для литий-серных аккумуляторов и литий-серные аккумуляторы, в которых используется этот электролит

Классы МПК:H01M6/14 элементы с неводным электролитом
H01M6/16 с органическим электролитом
H01M10/40 с органическим электролитом
Автор(ы):,
Патентообладатель(и):ОКСИС ЭНЕРДЖИ ЛИМИТЕД (GB)
Приоритеты:
подача заявки:
2004-12-02
публикация патента:

Изобретение относится к химическим источникам энергии с органическим электролитом. Техническим результатом изобретения является снижение нижнего температурного предела работоспособности литий-серных батарей. Согласно изобретению в качестве электролитов в литий-серных батареях предложено использовать растворы электролитных солей в смесях апротонных растворителей (преимущественно сульфонов), состав которых соответствует или близок к эвтектическому. 2 н. и 4 з.п. ф-лы, 1 табл., 1 ил.

электролит для литий-серных аккумуляторов и литий-серные аккумуляторы,   в которых используется этот электролит, патент № 2321104

Формула изобретения

1. Электролит для литий-серной аккумуляторной батареи, представляющий собой раствор одной или нескольких электролитных солей в смеси двух или нескольких апротонных органических растворителей, отличающийся тем, что смесь апротонных растворителей является эвтектической или близкой к эвтектической.

2. Электролит по п.1, отличающийся тем, что в качестве апротонных растворителей используют сульфоны с молекулярной массой от 94 до 150.

3. Литий-серная аккумуляторная батарея, включающая в себя отрицательный электрод, выполненный из литийсодержащего материала, положительный электрод, выполненный из серосодержащего материала, и электролит, отличающаяся тем, что электролит представляет собой раствор одной или нескольких электролитных солей в эвтектической или близкой к эвтектической смеси органических апротонных растворителей.

4. Батарея по п.3, отличающаяся тем, что литийсодержащий материал выбирают из группы, включающей металлический литий, литийсодержащий сплав, соединение, способное обратимо интерполировать ион лития.

5. Батарея по п.3, отличающаяся тем, что серосодержащий материал выбирают из группы, включающей элементарную серу и ее соединения, в частности, полисульфиды лития, сероорганические соединения и серосодержащие полимеры.

6. Батарея по любому из пп.3-5, отличающаяся тем, что в качестве апротонных растворителей используют сульфоны с молекулярной массой от 94 до 150.

Описание изобретения к патенту

Область техники

Настоящее изобретение относится к электрохимической энергетике и, в частности, к составам безводных апротонных электролитов, предназначенных для применения в химических источниках электроэнергии с отрицательными электродами из активных материалов (лития, натрия и др.). Настоящее изобретение имеет также отношение к химическим источникам электроэнергии, содержащим такие электролиты. Более конкретно настоящее изобретение относится к компонентам электролитных систем, содержащих безводные апротонные растворители, соли и иные добавки.

Уровень техники

Развитие современной техники требует создания новых типов аккумуляторов, обладающих, прежде всего, высокой удельной энергией, длительной циклируемостью и безопасностью. Энергетические и эксплуатационные характеристики аккумуляторов определяются свойствами используемой электрохимической системы. Основные требования к характеристикам вторичных литиевых батарей и их компонентов описывают патенты США №№5460905; 5462566; 5582623 и 5587253.

Наибольшей удельной энергией обладают литий-ионные аккумуляторы с жидкими и полимерными электролитами. Однако в настоящее время они достигли практически возможных энергетических характеристик. Дальнейший прогресс в области создания аккумуляторов с высокой плотностью энергии может быть при использовании новых электрохимических систем.

Весьма перспективна система Li-S, обладающая высокой плотностью энергии (2600 Вт*ч/кг), дешевизной, доступностью и безопасностью для природы и человека. В процессах заряда и разряда литий-серных батарей образуются растворимые соединения - полисульфиды лития. Поэтому характеристики литий-серных батарей (степень утилизации серы, длительность циклирования, температурный диапазон работоспособности и др.) в значительной мере определяются физико-химическими свойствами электролитных систем и компонентов, их составляющих, а именно растворителей и солей.

Для электролитов литиевых и литий-ионных батарей предложено использовать большое количество неводных апротонных органических растворителей различных классов, а также и их смесей. Например, составы различных электролитов описаны в патентах США №№3185590; 3578500; 3778310; 3877983; 4163829; 4118550; 4252876; 4499161; 4740436; 4060674; 4104451; 3907597; 6030720; 5079109 и Японии JP 08-298229; JP 09-147913 и JP 08-298230. Как правило, в качестве растворителей в электролитах литиевых используют замещенные и незамещенные эфиры, циклические эфиры, полиэфиры, линейные и циклические карбонаты, органические сульфиты и сульфаты, органические нитрилы и нитро-соединения, и др.

Большинство электролитных систем, предложенных для литий-ионных батарей, непригодны для использования в литий-серных батареях. Наилучшими растворителями для электролитных систем литий-серных батарей являются низкомолекулярные сульфоны [1-4]. Но низкомолекулярные сульфоны обладают высокими температурами плавления, что ограничивает нижний температурный предел их возможного применения. В патенте США №6245465 предложено в качестве апротонных растворителей для электролитов литий-серных батарей использовать нециклические сульфоны или фторированные несимметричные нециклические сульфоны, обладающие более низкими температурами плавления, их смеси, а также смеси несимметричных сульфонов с другими растворителями типа карбонатов, глимов, силоксанов и др. Однако температуры плавления предложенных сульфонов недостаточно низки для получения электролитов с желаемыми низкотемпературными свойствами. Кроме того, предложенные сульфоны дороги, что ограничивает возможность их широкомасштабного использования.

Сущность изобретения

В настоящем изобретении в качестве электролитов для литий-серных аккумуляторов предложено использовать растворы электролитных (преимущественно литиевых) солей в эвтектических и близких к эвтектическим смесях апротонных растворителей, преимущественно сульфонов с молекулярной массой от 94 до 150.

Применение эвтектических смесей растворителей существенно улучшает низкотемпературные свойства электролитов, что позволяет значительно понизить нижний температурный предел работоспособности литий-серных батарей, улучшить их низкотемпературные емкостные и мощностные характеристики, а также увеличить длительность циклирования при низких температурах.

На чертеже изображена диаграмма состояния системы сульфолан-метилпропилсульфон.

Примеры осуществления изобретения

Пример 1

Были синтезированы и изучены физико-химические свойства ряда низкомолекуляных сульфонов. Полученные данные сведены в таблицу.

Наименование сульфона Молекулярная массаПлотность 10 3*кг/м3Вязкость Н*с/м2, 103 Мольный объем, м3/моль *10 6tзаст., °С nD электролит для литий-серных аккумуляторов и литий-серные аккумуляторы,   в которых используется этот электролит, патент № 2321104
Метилэтилсульфон* 108,21,1638*4,75* 93,0*34,5 1,445357,5
Метилпропилсульфон122,2 1,10815,22110,3 32,51,4472 40,2
Метилбутилсульфон 136,21,06866,58 127,530,3 1,448535,1
Сульфолан120,21,2594 9,0495,4 28,41,482042,9
2,4-диметилсульфолан 148,21,12636,74 131,6-18,0 1,470830,0
электролит для литий-серных аккумуляторов и литий-серные аккумуляторы,   в которых используется этот электролит, патент № 2321104 t=40°C

Пример 2

Приготовлена смесь 0,8 мл метилпропилсульфона (tпл=32,5°С) и 0,2 мл сульфолана (tпл=28,4°С) и определена температура плавления этой смеси. Она составила +21°С.

Пример 3

Приготовлена смесь 0,6 мл метилпропилсульфона (tпл=32,5°С) и 0,4 мл сульфолана (t пл=28,4°С) и определена температура плавления этой смеси. Она составила +6°С.

Пример 4

Приготовлена смесь 0,4 мл метилпропилсульфона (tпл=32,5°С) и 0,6 мл сульфолана (tпл=28,4°С) и определена температура плавления этой смеси. Она составила - 8,5°С.

Пример 5

Приготовлена смесь 0,2 мл метилпропилсульфона (tпл=32,5°С) и 0,8 мл сульфолана (t пл=28,4°С) и определена температура плавления этой смеси. Она составила +0,5°С.

По температурам плавления чистых сульфонов и их смесей была построена диаграмма состояния системы сульфолан - метилпропилсульфон, которая представлена на чертеже. Экстраполяцией ветвей температурных зависимостей найден состав эвтектики и температура ее плавления. Из полученных данных следует, что температура плавления эвтектической смеси примерно на 45°С ниже температур плавления исходных сульфонов.

Пример 6

Был изготовлен литий-серный аккумулятор с анодом, изготовленным из металлической литиевой фольги, сепаратора Celgard и серного катода, содержавшего в качестве деполяризатора элементарную серу (70% вес.), углеродную токопроводящую добавку (Ketjenblack EC-600JD, -10% вес.) и связующее (полиэтиленоксид с молекулярной массой 4000000 - 20% вес.). Удельная поверхностная емкость катода составляла 2 мА·час/см2. Собранный аккумулятор был заправлен элктролитом, представляющим собой 1 М раствор LiClO4 в сульфолане. Аккумулятор цитировался с плотностью зарядного и разрядного тока 0,3 мА/см 2 при температуре 25°С. Емкость, отданная аккумулятором на 1 цикле составила 1,45 мА·ч/см2 . Степень использования серы - 72,5%.

Пример 7

Был собран литий-серный аккумулятор таким же образом, как и в примере 6. Аккумулятор был поставлен на цитирование с плотностью зарядного и разрядного тока 0,3 мА/см2 при температуре 0°С. Емкость, отданная аккумулятором на 1 цикле составила 0,42 мА·ч/см2. Степень использования серы - 21%.

Пример 8

Был собран литий-серный аккумулятор таким же образом, как и в примере 7. Аккумулятор был поставлен на цитирование с плотностью зарядного и разрядного тока 0,3 мА/см 2 при температуре 10°С. Емкость, отданная аккумулятором на 1 цикле составила 0,02 мА·ч/см2 . Степень использования серы - 1%.

Пример 9

Был собран литий-серный аккумулятор таким же образом, как и в примере 7, но в качестве электролита был использован 1 М раствор перхлората лития в эвтектической смеси сульфолан (2 Моля) и этилбутилсульфон (1 Моль).

Аккумулятор был поставлен на цитирование с плотностью зарядного и разрядного тока 0,3 мА/см2 при температуре 25°С. Емкость, отданная аккумулятором на 1 цикле составила 1,53 мА·ч/см2. Степень использования серы - 76,5%.

Пример 10

Был собран литий-серный аккумулятор таким же образом, как и в примере 7, но в качестве электролита был использован 1 М раствор перхлората лития в эвтектической смеси сульфолан (2 Моля) и этилбутилсульфон (1 Моль). Аккумулятор был поставлен на циклирование с плотностью зарядного и разрядного тока 0,3 мА/см2 при температуре 0°С. Емкость, отданная аккумулятором на 1 цикле составила 1,01 мА·ч/см2. Степень использования серы - 50,5%.

Пример 11

Был собран литий-серный аккумулятор таким же образом, как и в примере 6, но в качестве электролита был использован 1 М раствор перхлората лития в 2,4-диметилсульфолане. Аккумулятор был поставлен на циклирование с плотностью зарядного и разрядного тока 0,3 мА/см 2 при температуре 10°С. Емкость, отданная аккумулятором на 1 цикле составила 0,13 мА·ч/см2 . Степень использования серы - 6,5%.

Представленные примеры демонстрируют преимущества аккумуляторов с электролитом в виде растворов электролитных солей в эвтектических смесях сульфонов. При низких температурах (0°С-10°С) отдаваемая емкость и степень использования серы была выше у этих батарей в 2,5 и в 6 раз соответственно.

Литературные источники

1. Бикбаева Г.Г., Гаврилова А.А., Колосницын B.C. Разрядные характеристики литиевых элементов с твердым серным катодом в системе сульфолан-перхлорат лития. // Электрохимия. - 1993. - Т.29, №6. - С.716-720.

2. Колосницын B.C., Карасева Е.В., Аминева Н.А., Батыршина Г.А. Цитирование источников тока Li/S. // Электрохимия. - 2002. - Т.38, №3. - С.368-371.

3. Колосницын В.С. Карасева Е.В. Li-S аккумуляторы: проблемы и перспективы. Фундаментальные проблемы преобразования энергии в литиевых электрохимических системах. Материалы VII Международной конференции. 24-28 июня. Саратов. - 2002 г., с.90

4. Колосницын B.C., Карасева Е.В., Seung D.Y., Cho M.D. Влияние состава электролитной системы на эффективность циклирования Li-S аккумуляторов. Фундаментальные проблемы преобразования энергии в литиевых электрохимических системах. Материалы VII Международной конференции. 24-28 июня. Саратов - 2002 г., с.91-93.

Класс H01M6/14 элементы с неводным электролитом

электролит для химического источника тока -  патент 2505891 (27.01.2014)
литиевый химический источник тока с рулонной электродной сборкой -  патент 2390884 (27.05.2010)
литиевый химический источник тока с рулонной электродной сборкой -  патент 2335828 (10.10.2008)
литиевый химический источник тока -  патент 2318273 (27.02.2008)
перезаряжаемые гальванические элементы с высокой плотностью энергии и неводные электролиты -  патент 2277272 (27.05.2006)
способ изготовления аккумулятора системы li/liialcl4 nso2/cu, c -  патент 2259618 (27.08.2005)
способ приготовления раствора электролита для li/so2 аккумулятора -  патент 2248071 (10.03.2005)
li/so2 аккумулятор -  патент 2242825 (20.12.2004)
способ изготовления раствора электролита для li/so2 аккумулятора -  патент 2222075 (20.01.2004)
катодный материал для литиевого источника тока и способ его изготовления -  патент 2187177 (10.08.2002)

Класс H01M6/16 с органическим электролитом

способ приготовления гелеобразного полимерного электролита для светомодуляторов с пленочными электрохромными слоями -  патент 2488866 (27.07.2013)
ионная жидкость, содержащая катион фосфония со связью p-n, и способ ее получения -  патент 2409584 (20.01.2011)
электролит и химический источник электрической энергии -  патент 2402840 (27.10.2010)
ионная жидкость, содержащая ион фосфония, и способ ее получения -  патент 2374257 (27.11.2009)
батарея литиевых химических источников тока -  патент 2373614 (20.11.2009)
способ получения органических солей, содержащих анионы бис(перфторалкил)фосфината -  патент 2362778 (27.07.2009)
ионные жидкости, содержащие анионы [n(cf3)2]- -  патент 2351601 (10.04.2009)
литиевый химический источник тока -  патент 2339124 (20.11.2008)
катод литиевого химического источника тока -  патент 2339123 (20.11.2008)
литиевая вторичная батарея с электролитом, содержащим соединения аммония -  патент 2335044 (27.09.2008)

Класс H01M10/40 с органическим электролитом

полимерный электролит, способ его получения и электрохимический элемент -  патент 2373592 (20.11.2009)
пористая мембрана из органическо-неорганического композита и электрохимическое устройство, в котором она используется -  патент 2364010 (10.08.2009)
аккумуляторная система электропитания с внутренней самозащитой для подземных горных работ -  патент 2363076 (27.07.2009)
отрицательный электрод для аккумуляторной батареи с неводным электролитом -  патент 2359366 (20.06.2009)
функциональные добавки к электролиту и электрохимическое устройство, содержащее такой электролит -  патент 2358361 (10.06.2009)
электрод с повышенной безопасностью, изготовленный введением сшиваемого полимера, и электрохимическое устройство, содержащее такой электрод -  патент 2358358 (10.06.2009)
дисперсия металлического лития в электродах -  патент 2354012 (27.04.2009)
способ синтеза литированного оксида кобальта -  патент 2344515 (20.01.2009)
элемент аккумуляторной батареи -  патент 2343601 (10.01.2009)
способ изготовления электродов литий-ионного аккумулятора -  патент 2339121 (20.11.2008)
Наверх