аффинная модель жидкостной ракеты

Классы МПК:G09B23/06 в физике 
B64G7/00 Имитация космических условий, например для установления условий жизнеобеспечения
A63H27/00 Самолеты; прочие игрушечные летательные аппараты
Автор(ы):, , , ,
Патентообладатель(и):Ростовский военный институт ракетных войск им. Главного маршала артиллерии Неделина М.И. (RU)
Приоритеты:
подача заявки:
2006-03-14
публикация патента:

Изобретение относится к области физического моделирования, в частности к моделям конструкций ракетно-космической техники, удовлетворяющих требованиям геометрического и конструктивного аффинного подобия их элементов. В предлагаемой модели конический обтекатель, цилиндрические баки с жидкостью, переходной и хвостовой отсеки, сопла двигательных установок и стабилизаторы соединены в одно целое при помощи пленочной вакуумной упаковки. При этом цилиндрические баки выполнены герметичными с геометрическим подобием по критерию постоянного отношения диаметра бака к толщине его стенок и с конструктивным подобием по критерию эквивалентного материала. В качестве газа для наддува баков использован сжатый углекислый газ. При испытаниях описанная модель может подвергаться полному или частичному разрушению при оценке прочности, устойчивости к внешним воздействиям и надежности. На базе данной модели может проводиться сравнительная оценка различных конструктивно-технологических решений на этапе разработки. Технический результат изобретения состоит в достаточно высокой эффективности предлагаемой модели при ее испытаниях и относительно небольшой стоимости модели. 2 ил. аффинная модель жидкостной ракеты, патент № 2331115

аффинная модель жидкостной ракеты, патент № 2331115 аффинная модель жидкостной ракеты, патент № 2331115

Формула изобретения

Аффинная модель жидкостной ракеты, содержащая конический обтекатель, цилиндрические баки с жидкостью, переходной отсек, хвостовой отсек, сопла двигательных установок, стабилизаторы, отличающаяся тем, что конический обтекатель, цилиндрические баки с жидкостью, переходной и хвостовой отсеки, сопла двигательных установок и стабилизаторы соединены в одно целое при помощи пленочной вакуумной упаковки, цилиндрические баки с жидкостью выполнены герметичными с геометрическим подобием по критерию постоянного отношения диаметра бака к толщине его стенок и с подобием по критерию эквивалентного материала, а в качестве газа для наддува цилиндрических баков с жидкостью использован сжатый углекислый газ.

Описание изобретения к патенту

Изобретение относится к области физического моделирования, в частности к моделям конструкций ракетно-космической техники, удовлетворяющих требованиям геометрического и конструктивного аффинного подобия [1] таких элементов, как обтекатели и головные части ракет, корпуса и топливные баки жидкостных ракет.

Известны модели объектов, представляющие собой уменьшенные копии [2] ракетно-космических и других летательных аппаратов, созданных с целью обеспечения той или иной степени геометрического и конструктивно-эксплуатационного подобия.

Ближайшим аналогом может служить модель жидкостной ракеты [3], содержащая конический обтекатель, цилиндрические баки с жидкостью, переходной отсек, хвостовой отсек, сопла двигательных установок, стабилизаторы.

Известная модель может частично решать задачу физического моделирования, однако не обеспечивает достаточно полного подобия по критериям постоянного отношения диаметра бака к толщине его стенок и эквивалентного материала.

Задачей изобретения является обеспечение более полного, аффинного подобия модели жидкостной ракеты по указанным критериям.

Данная задача решена таким образом, что в известной модели жидкостной ракеты [3] конический обтекатель, цилиндрические баки с жидкостью, переходной и хвостовой отсеки, сопла двигательных установок и стабилизаторы соединены в одно целое при помощи пленочной вакуумной упаковки, цилиндрические баки с жидкостью выполнены герметичными с геометрическим подобием по критерию постоянного отношения диаметра бака к толщине его стенок и с подобием по критерию эквивалентного материала, а в качестве газа для наддува цилиндрических баков с жидкостью использован сжатый углекислый газ.

Сущность предлагаемой аффинной модели поясняется примером ее конкретного исполнения, данным на чертежах, где на фиг.1 показан общий вид модели; на фиг.2 - вид А: увеличенный фрагмент баков с жидкостью.

Аффинная модель жидкостной ракеты содержит конический обтекатель 1, цилиндрические баки 2 с жидкостью, переходной отсек 3, хвостовой отсек 4, сопла двигательных установок 5, стабилизаторы 6, гаргрот 7. Конический обтекатель 1, цилиндрические баки 2 с жидкостью, переходной отсек 3, хвостовой отсек 4, а также сопла двигательных установок 5, стабилизаторы 6, гаргрот 7 соединены в одно целое при помощи пленочной вакуумной упаковки 8.

Цилиндрические баки 2 с жидкостью выполнены герметичными с геометрическим подобием по критерию постоянного отношения диаметра бака к толщине его стенок и с подобием по критерию эквивалентного материала. В качестве критерия эквивалентности могут быть выбраны, в частности, модуль упругости, предел прочности или коэффициент теплового расширения материала.

В качестве газа для наддува цилиндрических баков с жидкостью использован сжатый углекислый газ.

Аффинная модель жидкостной ракеты может размещаться на испытательном стенде горизонтально, вертикально и под любыми углами наклона для непосредственного проведения испытаний с физическим моделированием воздействий различных видов, интенсивности и природы.

При испытаниях аффинная модель жидкостной ракеты может подвергаться полному или частичному разрушению при оценке прочности, устойчивости к внешним воздействиям, надежности, а также сравнительной оценке различных конструктивно-технологических решений на этапе разработки [1, 4].

Технический результат изобретения состоит в достаточно высокой эффективности предлагаемой модели при ее испытаниях и в относительно небольшой стоимости модели, так как часть элементов, например топливные баки, просты в изготовлении и освоены промышленностью.

Источники информации

1. Л.А.ШАПОВАЛОВ. Моделирование в задачах механики элементов конструкций. М.: Машиностроение. 1990, с.5, 48, 86, 147, 181, 252-260.

2. P.STACHE. Sowjetische Raketen. Militarverlag der DDR, 1987. - 288S - 245 Abb.

3. Патент US 3943656 A (DAMON CORP), 16.03.1976.

4. ПАРТОН В.З. Механика разрушения: от теории к практике. - М.: Наука, 1990.

Класс G09B23/06 в физике 

устройство моделирования минимальной поверхности -  патент 2524474 (27.07.2014)
демонстрационный волчок -  патент 2496147 (20.10.2013)
прибор для изучения законов механики -  патент 2473974 (27.01.2013)
прибор для демонстрации свойств упругих волн -  патент 2473132 (20.01.2013)
прибор для демонстрации свойств упругих волн -  патент 2472228 (10.01.2013)
демонстрационный гироскоп -  патент 2462761 (27.09.2012)
комплект для демонстрации законов механики (варианты), магнитный герконовый датчик и приспособление для определения мгновенной скорости тела, брошенного горизонтально -  патент 2460146 (27.08.2012)
лабораторная установка для исследования, демонстрации процессов сушки, хранения и кондиционирования зерна (семян) -  патент 2454278 (27.06.2012)
прибор для демонстрации свойств упругих волн -  патент 2421821 (20.06.2011)
полиуретановая модель тканеэквивалентного органа -  патент 2410758 (27.01.2011)

Класс B64G7/00 Имитация космических условий, например для установления условий жизнеобеспечения

способ моделирования физиологических эффектов пребывания на поверхности планет с пониженным уровнем гравитации -  патент 2529813 (27.09.2014)
способ наземной имитации полета космических аппаратов в космосе -  патент 2527632 (10.09.2014)
способ тепловых испытаний приборного отсека летательного аппарата -  патент 2526406 (20.08.2014)
многофункциональный учебно-тренировочный комплекс для подготовки космонавтов (астронавтов) к внекорабельной деятельности (варианты) -  патент 2524503 (27.07.2014)
способ имитации внешних тепловых потоков для наземной отработки теплового режима космического аппарата -  патент 2519312 (10.06.2014)
функционально-моделирующий стенд для создания условий интерактивного безопорного пространства и пониженной гравитации -  патент 2518478 (10.06.2014)
способ испытаний многозвенной механической системы космического аппарата на функционирование и устройство для его осуществления -  патент 2516880 (20.05.2014)
тренажер внекорабельной деятельности космонавтов -  патент 2506648 (10.02.2014)
тренажерный комплекс орбитального узлового модуля российского сегмента международной космической станции -  патент 2506647 (10.02.2014)
грузовой макет ракетоносителя -  патент 2491211 (27.08.2013)

Класс A63H27/00 Самолеты; прочие игрушечные летательные аппараты

Наверх