катализатор для получения линейных моноалкилбензолов и способ его получения
Классы МПК: | B01J21/04 оксид алюминия B01J23/74 металлы группы железа B01J27/053 сульфаты B01J37/02 пропитывание, покрытие или осаждение C07C2/66 каталитические способы |
Автор(ы): | Шилина Марина Ильинична (RU), Смирнов Владимир Валентинович (RU), Бахарев Роман Витальевич (RU), Ланин Сергей Николаевич (RU) |
Патентообладатель(и): | Государственное учебно-научное учреждение Химический факультет МГУ имени М.В. Ломоносова (RU) |
Приоритеты: |
подача заявки:
2009-01-13 публикация патента:
10.03.2010 |
Изобретение относится к катализаторам процессов алкилирования ароматических углеводородов олефинами, конкретно к катализаторам получения линейных алкилбензолов. Описан катализатор для получения линейных алкилбензолов (ЛАБ) путем жидкофазного алкилирования бензола длинноцепочечными (С8-С14) -олефинами, представляющий собой сульфатированный оксид металла, при этом в качестве оксида используется оксид алюминия, катализатор дополнительно содержит 0.1-5% мас. металла подгруппы железа или смеси металлов подгруппы железа, и содержание серы в катализаторе составляет 3-6% от массы оксида алюминия. Также описан способ получения вышеописанного катализатора, в котором дополнительно к сульфатированию оксида алюминия 0,5-1 М серной кислотой, сушке при температуре 100-120°С и прокаливании при температуре 450-480°С, осуществляют последующую обработку водным раствором нитрата металла подгруппы железа, повторную сушку и прокаливание при вышеуказанных температурах. Технический эффект - повышение селективности жидкофазного алкилирования бензола альфа-олефинами по важному продукту - 2-фенилизомеру при поддержании высокого выхода линейных алкилбензолов. 2 н.п.ф-лы, 1 табл.
Формула изобретения
1. Катализатор для получения линейных алкилбензолов (ЛАБ) путем жидкофазного алкилирования бензола длинноцепочечными (С8-С14) -олефинами, представляющий собой сульфатированный оксид металла, отличающийся тем, что в качестве оксида используется оксид алюминия, катализатор дополнительно содержит 0.1-5 мас.% металла подгруппы железа или смеси металлов подгруппы железа и содержание серы в катализаторе составляет 3-6% от массы оксида алюминия.
2. Способ получения катализатора согласно п.1, отличающийся тем, что дополнительно к сульфатированию оксида алюминия 0,5-1 М серной кислотой, сушки при температуре 100-120°С и прокаливания при температуре 450-480°С осуществляют последующую обработку водным раствором нитрата металла подгруппы железа, повторную сушку и прокаливание при вышеуказанных температурах.
Описание изобретения к патенту
Изобретение относится к катализаторам процессов алкилирования ароматических углеводородов олефинами, конкретно к катализаторам получения линейных алкилбензолов. Изобретение найдет применение в процессах нефтехимии, нефтепереработки и органического синтеза.
Линейные алкилбензолы (ЛАБ) с длиной цепи обычно 10-14 атомов углерода являются ценными продуктами органического синтеза, основой производства синтетических моющих средств. Сульфатированные алкилбензолы, получаемые из ЛАБов сульфированием, обладают лучшими моющими свойствами, чем природные детергенты - натриевые соли жирных кислот, кроме того, они относительно дешевы и более склонны к биодеградации.
Ключевыми показателями эффективности процесса получения ЛАБ являются высокая конверсия олефинов, высокий выход линейных моноалкилбензолов и высокая селективность образования линейного 2-фенилизомера. Последний характеризуется лучшими моющими свойствами и легче других изомеров подвергается процессу разложения под действием различных микроорганизмов, поэтому селективность реакции по этому продукту, наряду с суммарным содержанием ЛАБ, одна из основных характеристик процесса.
В промышленности ЛАБ обычно получают алкилированием бензола в присутствии гомогенных катализаторов - фтористоводородной кислоты или AlCl3 . Указанные катализаторы обладают высокой активностью и относительно хорошей (только для HF) селективностью по моноалкилбензолам, однако они трудно регенерируемы, вызывают коррозию оборудования и оказывают неблагоприятное воздействие на окружающую среду из-за образования опасных побочных продуктов. Промышленный процесс дает конверсию 94-95% (по весу), селективность по линейным АБ - 93-94 и селективность по 2-фенилизомеру - около 25%.
Известен гетерогенный катализатор, получаемый нанесением на оксидные носители (оксиды алюминия, титана, алюмосиликаты) соединений, относящихся к типичным кислотам Льюиса (галогенидов алюминия, бора, титана, тантала и др.) (US 5,107,048, US 4,463,207), предпочтительно, в присутствии благородных металлов (Pt, Pd и др.) (US 5,672,797). Алкилирование ароматических соединений под действием таких катализаторов идет в мягких условиях с высокой конверсией олефина. Однако продукты алкилирования содержат много нелинейных моноалкилбензолов (до 10% составляют разветвленные алкилбензолы), кроме того, идет побочная олигомеризация олефинов.
Известны гетерогенные катализаторы алкилирования бензола длинноцепочечными (С8-С14) -олефинами - продукты обработки алюмосиликатов водными растворами фтористоводородной кислоты - фторированные алюмосиликаты (US 4,463,205, US 5,196,574, US 5,334,793, US 6,521,804). Получаемые в их присутствии алкилбензолы обладают 95% линейностью, однако селективность по 2-фенилизомеру в смеси линейных изомеров составляет всего 25%.
Известны способы получения ЛАБ алкилированием бензола -олефинами в присутствии цеолитов - морденита (US 6,448,458, US 5,770,782, US 5,019,669, US 5,146,026, US 6,315,964), BETA (US 7,008,914, US 6,448,458, US 5,770,782, US 6,315,964), MTW и NES (US 6,448,458), фожазита, бентонита, эрионита (US 5,146,026). При высокой конверсии -олефинов (95-100%) выход линейных алкилбензолов и селективность по 2-фенилизмеру невысоки. Наилучшие результаты получены при использовании цеолитов с микромезопористой структурой, синтезированных из микропористых цеолитов структуры FAU, LTL, FER, MAZ, MOR, BEA, MFI, MEL, MTW
путем сложной последовательности обработок, включая щелочное травление, суспендирование с катионным поверхностно-активным веществом и гидротермальную обработку (RU 2,312,396). При высокой конверсии -олефинов (95%)
выход монофенилалканов при алкилировании бензола под действием полученных катализаторов не превышает 73%, причем среди них доля целевых линейных изомеров составляет 90-91%, остальное - разветвленные изомеры 9-10%.
Наиболее близкими к предлагаемому являются катализаторы алкилирования бензола, получаемые сульфатированием оксида циркония или нанесением вольфрам- и молибденсодержащих гетерополикислот на нецеолитные носители: силикагель и природные глины, например К-10 (G.D.Yadav, J.J.Nair, Micropor. Mesopor. Materials 1999, V.33. P.1-48, G.D.Yadav, N.S.Doshi, Org. Proc. Res. Develop., 2002, V.6, P.263-272). Алкилирование ароматических соединений -олефинами в присутствии таких катализаторов проводят в автоклаве при температуре 150°С. Конверсия олефинов в таких процессах составляла всего 12% в случае сульфатированного циркония и 90-97% для катализаторов, полученных при нанесении гетерополикислот на К-10. Недостатком описываемых катализаторов являлась низкая селективность по 2-фенилизомеру, не превышающая 35% для всех указанных каталитических систем.
В том же источнике описан способ получения катализатора, заключающийся в обработке гидроксида циркония 1N серной кислотой, просушкой при 110°С и прокаливанием при 650°С в течение 3 ч.
Задачей настоящего изобретения является повышение селективности алкилирования бензола -олефинами по 2-фенилизомеру при условии поддержания высокого выхода линейных моноалкилбензолов.
Поставленная задача решается катализатором получения ЛАБ путем жидкофазного алкилирования бензола длинноцепочечными (С8-С14) -олефинами, представляющим собой сульфатированный оксид металла, отличающийся тем, что в качестве оксида используется оксид алюминия, катализатор дополнительно содержит 0.1-5% мас., металла подгруппы железа или смеси металлов подгруппы железа, и содержание серы в катализаторе составляет от 3 до 6% от массы оксида алюминия.
Использование большего или меньшего количества серы нецелесообразно, т.к. приводит к снижению активности катализатора. Увеличение и уменьшение содержания металла группы железа за пределами выбранного интервала также нецелесообразно, поскольку также сопровождается потерей активности.
Поставленная цель достигается также способом получения катализатора, отличающегося тем, что дополнительно к сульфатированию оксида алюминия 0,5-1 М серной кислотой, сушки при температуре 100-120°С и прокаливания при температуре 450-480°С осуществляют последующую обработку водным раствором нитрата металла подгруппы железа, повторную сушку и прокаливание при вышеуказанных температурах.
Нецелесообразно увеличивать температуру прокаливания выше 500°С, так как это приводит к потери сульфатных групп на поверхности. Прокаливание при температурах ниже 400°С приводит к понижению активности катализатора.
Нецелесообразно одновременное введение сульфат-анионов и ионов переходных металлов в одну стадию из разных растворов или путем использования растворов сульфатов переходных металлов, так как это приводит к получению катализатора алкилирования, обладающего значительно меньшей активностью (пример 16 в табл.).
Нижеследующие примеры иллюстрируют изобретение, но не ограничивают его.
Пример 1. Получение катализатора
Перед приготовлением катализаторов промышленно доступный -оксид алюминия (в данном случае использовали -Al2O3 марки ИК-27-25, площадь поверхности 220 м2 /г) прокаливали в муфельной печи при температуре 500°С в течение 10 часов. Для получения сульфатированного катализатора в навеску массой 10 г -оксида алюминия порциями вводили 37,5 мл водного раствора серной кислоты концентрации 0,5 М, выдерживали в течение 24 часов во влажном состоянии. Полученный образец высушивали в течение суток при комнатной температуре, затем при температуре 110°С в сушильном шкафу в течение 10 часов, после чего кальцинировали в токе сухого воздуха при температуре 450°С в течение 3 часов. Затем навеску 5 г полученного сульфатированного -оксида алюминия пропитывали порционно 8,5 мл водного раствора гексагидрата нитрата кобальта с концентрацией 0,1 моль/л и выдерживали в течение 24 часов во влажном состоянии. Затем образец высушивали в течение суток при комнатной температуре, 10 часов при 110°С и прокаливали в токе сухого воздуха в течение 3 часов при 450-480°С. Получают катализатор, содержащий 5% мас. серы и 0,3% мас. Со. Содержание металлов определяли с помощью метода атомно-абсорбционной спектроскопии, содержание сульфатных групп - гравиметрически. Полученный катализатор стабилен в контакте с атмосферой и может храниться в закрытой посуде без специальных мер предосторожности без потери активности в течение, по крайней мере, месяца.
Пример 2. Испытание каталитических свойств
В двугорлую круглодонную колбу (50 мл), снабженную обратным холодильником, ртутным термометром и магнитной мешалкой, помещают 10 мл бензола, 2,5 мл октена-1 и 0,5 мл н-нонана. н-Нонан применяется в качестве внутреннего стандарта, проверочные эксперименты показали его инертность в условиях реакции. Реакционную смесь термостатируют до установления необходимой температуры 25°С, затем вводят навеску катализатора 2 г, предварительно прогретого при 450°С в токе воздуха в течение 30 мин. Проводят реакцию в течение 1 ч, периодически отбирая пробы для анализа, затем отделяют декантацией твердый катализатор. Реакционные смеси анализируют с помощью газожидкостной хроматографии и хроматомасс-спектрометрии. Результаты реакции представлены в табл.
Примеры 3-7. Испытание каталитических свойств проведено, как в примере 2, но в качестве катализатора используются катализаторы, приготовленные как в примере 1, но отличающиеся по содержанию серы, природе металла и содержанию металла в образце. Результаты испытаний приведены в табл.
Пример 8 иллюстрирует испытание каталитических свойств при температурах 60°С и выше. Реакцию проводят, как в примере 2, но вместо двугорлой колбы используют толстостенный стеклянный сосуд. После загрузки 5 мл бензола, 1,5 мл октена-1, 0,25 мл н-нонана и 0,6 г катализатора, описанного в примере 1, реактор запаивают и нагревают при перемешивании до 60°C в течение 1 часа. Затем реактор охлаждают до комнатной температуры, отделяют декантацией твердый катализатор и анализируют, как в примере 2. Результаты приведены в табл.
Примеры 9-10. Испытание каталитических свойств проведено, как в примере 8, но в качестве катализатора используются катализаторы, приготовленные как в примере 1, отличающиеся тем, что содержание Co в них указано в табл., и они дополнительно обрабатываются водными растворами нитрата никеля с последующей просушкой и кальцинированием, как в примере 1. Результаты испытаний и состав образцов приведены в табл.
Примеры 11-12. Испытание каталитических свойств проведено, как в примере 8, но вместо октена-1 используется децен-1. Состав катализаторов, температура опытов и результаты приведены в табл.
Примеры 13-14. Испытание каталитических свойств проведено, как в примере 8, но вместо октена-1 используется додецен-1. Результаты приведены в табл.
Пример 15. Испытание каталитических свойств проведено, как в примере 8, но вместо октена-1 используется тетрадецен-1. Результаты приведены в табл.
Нижеследующие примеры иллюстрируют результаты сравнительных опытов, показывающие невозможность достижения поставленной цели без использования всей совокупности приемов, предложенных в изобретении.
Пример 16. Приготовление катализаторов аналогично примеру 1, но вместо последовательной двукратной обработки растворами серной кислоты и нитрата переходного металла (Ni) использована обработка раствором сульфата никеля концентрации 0,5 М. Результаты испытаний, аналогичных примеру 2, и состав катализатора приведены в табл. Из таблицы видно, что такой способ приготовления катализатора приводит к катализатору, обладающему меньшей активностью. При 25°C конверсия олефина здесь составляет 67% за 3 часа, тогда как аналогичная степень превращения олефина в присутствии катализатора, приготовленного как в примере 1, достигается за 0,5 час, а за 1,8 ч конверсия составляет 94% (пример 5).
Примеры 17-19. Приготовление катализаторов аналогично примеру 1, но содержание металлов и серы в них выходит за рамки формулы изобретения. Испытания проведены, как в примере 8, результаты приведены в табл.
Примеры 20-21. Приготовление катализаторов аналогично примеру 1, но при получении катализатора прокаливание ведется при температурах 650°C (пример 20) и 350°С (пример 21). При 25°С конверсия октена-1 составляет 65% и 50% соответственно за 3 часа.
Изобретение обеспечивает повышение селективности жидкофазного алкилировании бензола альфа-олефинами по важному продукту - 2-фенилизомеру при поддержании высокого выхода линейных алкилбензолов в присутствии гетерогенного катализатора, позволяет вести процесс в мягких условиях и использовать для приготовления катализатора доступное недорогое сырье.
Результаты испытаний катализаторов алкилирования бензола альфа-олефинами | ||||||||
Пример | Катализатор | Характеристики катализатора | Условия реакции | Конверсия олефина, % | Селект. по ЛАБ, % | Селект. по 2-фенилизомеру, % | ||
% S, мас. | % Me, мас. | Т°С | Время, час | |||||
2 | Al2O 3/SO4/Co | 5 | 0,3 | 25 | 1.5 | 94 | 90 | 53 |
3 | Al2O3 /SO4/Ni | 6 | 0,2 | 25 | 1,8 | 96 | 89 | 53 |
4 | Al2O3 /SO4/Ni | 3,3 | 0,5 | 25 | 1,5 | 96 | 89 | 53 |
5 | Al2O3 /SO4/Ni | 3 | 4,5 | 25 | 1,8 | 94 | 89 | 53 |
6 | Al2O3 /SO4/Ni | 3,3 | 1 | 25 | 1,5 | 97 | 90 | 53 |
7 | Al2O3 /SO4/Fe | 3,3 | 1 | 25 | 2 | 92 | 89 | 53 |
8 | Al2O3 /SO4/Co | 5 | 0,3 | 60 | 1 | 97 | 89 | 53 |
9 | 5 | 0,2 (Co) | 60 | 97 | 90 | 53 | ||
Al2 O3/SO4/Co/Ni | 0,2 (Ni) | 1 | ||||||
10 | 3,5 | 0,1 (Co) | 60 | 97 | 90 | 53 | ||
Al2 O3/SO4/Co/Ni | 0,3 (Ni) | 1 | ||||||
11 | Al2O3 /SO4/Co | 3,7 | 1 | 100 | 1 | 97 | 88 | 53 |
12 | Al2O3 /SO4/Co | 5 | 0,3 | 80 | 0,7 | 97 | 88 | 51 |
13 | Al2O3 /SO4/Co | 5 | 0,5 | 60 | 1 | 95 | 88 | 52 |
14 | Al2O3 /SO4/Ni | 3 | 5 | 60 | 1 | 95 | 88 | 52 |
15 | Al2O3 /SO4/Co | 5,5 | 0,1 | 80 | 1,5 | 95 | 88 | 51 |
16 | Al2O3 /NiSO4 | 2,7 | 4,5 | 25 | 3 | 67 | 98 | 59 |
17 | Al2O3 /SO4/Ni | 8 | 0,2 | 60 | 1,5 | 55 | 98 | 59 |
18 | Al2O3 /SO4/Co | 1 | 8 | 60 | 1,5 | 35 | 90 | 60 |
19 | Al2O3 /SO4/Fe | 9 | 8 | 60 | 1,5 | 30 | 90 | 60 |
Класс B01J21/04 оксид алюминия
Класс B01J23/74 металлы группы железа
Класс B01J37/02 пропитывание, покрытие или осаждение
Класс C07C2/66 каталитические способы