способ приготовления катализатора и способ получения пероксида водорода

Классы МПК:B01J37/02 пропитывание, покрытие или осаждение
B01J37/08 термообработка
B01J23/44 палладий
B01J23/52 золото
C01B15/01 пероксид водорода
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) (RU)
Приоритеты:
подача заявки:
2013-04-24
публикация патента:

Изобретение относится к способу получения катализатора окисления водорода молекулярным кислородом до пероксида водорода, включающему стадии нанесения предшественников металлов, а именно золота и палладия, на носитель и термообработки. При этом в качестве предшественников золота и палладия используют анионные комплексы [Pd(C2O4)2]2-, [Pd(CN) 4]2-, [PdCl4]2-, [AuCl 4]-, [AuBr4]- в сочетании с катионными комплексами [Pd(dien)H2O]2+ , [Pd(en)2]2+, [Au(pap)2] +, [Au(en)2]3+, [Au(dien)Cl] 2+, [Au(HDMG)2]+ (где: pap = 2-фенилазофенил, en = этилендиамин, dien = диэтилентриамин, HDMG = однозарядный анион диметилглиоксима НОН=С(-CH3)-C(-CH3 )=NO-), которые образуют при взаимодействии друг с другом малорастворимое в воде соединение комплексной соли. Также изобретение относится к способу получения пероксида водорода путем окисления водорода молекулярным кислородом с использованием полученного катализатора. Изобретение позволяет селективно проводить синтез пероксида водорода благодаря высокой активности получаемых катализаторов. 2 н. и 5 з.п. ф-лы, 2 табл., 8 пр.

Формула изобретения

1. Способ приготовления катализатора окисления водорода молекулярным кислородом до пероксида водорода, включающий стадии нанесения предшественников металлов, а именно золота и палладия, на носитель и термообработки, отличающийся тем, что в качестве предшественников золота и палладия используют анионные комплексы [Pd(C2 O4)2]2-, [Pd(CN)4 ]2-, [PdCl4]2-, [AuCl4 ]-, [AuBr4]- в сочетании с катионными комплексами [Pd(dien)H2O]2+, [Pd(en) 2]2+, [Au(pap)2]+, [Au(en) 2]3+, [Au(dien)Cl]2+, [Au(HDMG) 2]+ (где: pap = 2-фенилазофенил, en = этилендиамин, dien = диэтилентриамин, HDMG = однозарядный анион диметилглиоксима НОН=С(-CH3)-C(-CH3)=NO-), которые образуют при взаимодействии друг с другом малорастворимое в воде соединение комплексной соли.

2. Способ по п.1, отличающийся тем, что в качестве носителя используют, например, пористый кремний или углерод или оксиды переходных металлов, предпочтительно пористый кремний или углерод.

3. Способ по п.1, отличающийся тем, что вначале на носитель наносят анионную часть, а затем катионную.

4. Способ по п.1, отличающийся тем, что вначале на носитель наносят катионную часть, а затем анионную.

5. Способ по п.1, отличающийся тем, что на носитель наносят одновременно катионную и анионную часть комплексной соли в виде раствора преимущественно в полярном органическом растворителе.

6. Способ получения пероксида водорода путем окисления водорода молекулярным кислородом в присутствии жидкости и катализатора при температурах выше - 20°C, отличающийся тем, что в качестве катализатора используют катализатор по любому из пп.1-5.

7. Способ по п.6, отличающийся тем, что получение проводят, используя в качестве жидкости метанол и/или воду.

Описание изобретения к патенту

Изобретение относится к катализатору и процессу каталитического метода синтеза пероксида водорода путем окисления водорода кислородом.

Пероксид водорода - перспективный окислитель, который можно использовать в очистке сточных вод, в синтезе, как портативный источник кислорода и во многих других областях. Основной метод получения данного продукта - это антрахиноновый процесс, который рентабелен только при больших объемах производства. Недостатки данного способа - высокая стоимость теплообменного и экстракционного оборудования и большой расход дорогого хинона.

Альтернативным способом синтеза пероксида водорода является метод прямого синтеза из водорода и кислорода с использованием палладиевых катализаторов (С. Samanta // Appl. Catal. A. 250 (2008) 133-149). Недостатком данного процесса является низкая селективность, из-за чего производительность оказывается низкой.

Известно, что добавки золота к палладиевому катализатору существенно увеличивают селективность процесса. Обычно катализаторы готовят совместной пропиткой носителей (Al2O3, TiO2 , C, SiO2 и др.) растворами солей PdCl2 и HAuCl4 с последующей термообработкой [J.K. Edwards // J. Catal. 292 (2012) 227-238; G.J. Hutchings // Science 323 (2009) 1037-1041]. Недостатком данного метода приготовления катализаторов является то, что не обеспечивается селективный контакт атомов золота с атомами палладия, в результате чего снижается производительность и селективность катализаторов.

Недостатком известного метода (US 6387346, C01B 15/01, 14.05.2002), где активный компонент катализатора синтезировали методом распылительной сушки из кислого (pH=1.5-2) совместного раствора хлоридов Pd и Au, является высокая температура закалки металлических наночастиц 900-1050°C, использованная для образования сплавов Au и Pd. Применение таких температур приводит к образованию слишком крупных частиц и снижению производительности катализатора. Кроме того, нанесение сформированных наночастиц металлов проводилось пропиткой носителя золем частиц, что не обеспечивает равномерного распределения частиц активного компонента по поверхности носителя и может приводить к снижению их дисперсности, что также снижает производительность катализатора.

Изобретение решает задачу по созданию золотопалладиевого катализатора, обладающего более высокой активностью и селективностью, чем известные катализаторы.

Задача решается способом приготовления золотопалладиевого катализатора окисления водорода молекулярным кислородом до пероксида водорода, включающим стадии нанесения предшественников металлов на носитель и последующей термообработки, при котором в качестве предшественников золота и палладия используют анионные и катионные комплексы, которые образуют при взаимодействии друг с другом малорастворимое соединение комплексной соли.

В качестве предшественников золота и палладия могут быть использованы анионные комплексы [Pd(C 2O4)2]2-, [Pd(CN) 4]2-, [PdCl4]2-, [AuCl 4]-, [AuBr4]- в сочетании с катионными комплексами [Pd(dien)H2O]2+ , [Pd(en)2]2+, [Au(pap)2] +, [Au(en)2]3+, [Au(dien)Cl] 2+, [Au(HDMG)2]+ (где: pap=2-фенилазофенил, en=этилендиамин, dien=диэтилентриамин, HDMG=однозарядный анион диметилглиоксима HON=C(-CH3)-C(-CH3)=NO -), которые образуют при взаимодействии друг с другом малорастворимое в воде соединение комплексной соли.

Предпочтительно, например, в качестве катионного комплекса может быть использован [Au(dien)Cl]2+, а в качестве анионного комплекса может быть использован [PdCl4]2-, при взаимодействии друг с другом образующие [Au(dien)Cl][PdCl4]. При дальнейшей термообработке происходит образование биметаллических частиц.

В качестве носителя для катализатора могут быть использованы, например, оксиды переходных металлов, пористый кремний или углерод, предпочтительно пористый кремний или углерод. Обработку носителя растворами солей золота и меди можно проводить в любой последовательности, например, вначале на носитель наносят катионную часть, а затем анионную, или вначале на носитель наносят анионную часть, а затем катионную. Или же путем нанесения сформированной комплексной соли в виде раствора, например, в полярном органическом растворителе.

Задача решается также способом синтеза пероксида водорода путем окисления водорода молекулярным кислородом в присутствии жидкости и катализатора при температурах выше - 20°C, на катализаторе, описанном выше. В качестве жидкости при проведении синтеза могут быть использованы, например, метанол и/или вода.

Сущность изобретения иллюстрируется следующими примерами и таблицами.

Примеры 1-6 иллюстрируют приготовление катализаторов.

Пример 1

Приготовление золотопалладиевого катализатора, нанесенного на пористый углерод, содержащего 2,0 мас.% Pd и 3,7 мас.% Au.

К 10,0 г носителя (C) при комнатной температуре приливают при тщательном перемешивании 15,0 мл 0,125 M водного раствора K2[PdCl4]. Далее пропитанный носитель сушат при температуре 80-90°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 15,0 мл 0,125 M водного раствора [Au(dien)Cl]Cl 2. Молярное соотношение Pd:Au на поверхности носителя составляет 1:1. Затем пропитанный носитель подвергают сушке при температуре 80-90°C в течение 12-16 ч.

После чего проводят обработку раствором гидразина или формальдегида или термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч. Затем катализатор промывают водой и этанолом, сушат при температуре 80-90°C в течение 12-16 ч.

Пример 2

Приготовление золотопалладиевого катализатора, нанесенного на пористый оксид алюминия, содержащего 2,0 мас.% Pd и 2,5 мас.% Au.

К 10,0 г носителя (способ приготовления катализатора и способ получения пероксида   водорода, патент № 2526460 -Al2O3) при комнатной температуре приливают, при тщательном перемешивании, 12,0 мл 0,104 M водного раствора [Au(en)2]Cl3. Далее пропитанный носитель сушат при температуре 50-60°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 12,0 мл 0,156 М водного раствора K2 [Pd(C2O4)2]. Молярное соотношение Pd:Au на поверхности носителя составляет 3:2. Затем пропитанный носитель подвергают сушке при температуре 80-90°C в течение 12-16 ч.

После чего проводят обработку раствором гидразина или формальдегида или термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч. Затем катализатор промывают водой и этанолом, сушат при температуре 80-90°C в течение 12-16 ч.

Пример 3

Приготовление золотопалладиевого катализатора, нанесенного на пористый кремний, содержащего 2,0 мас.% Pd и 7,4 мас.% Au.

1,7 г соли [Pd(en)2][AuCl 4]2 растворяют в 100 мл ацетона. Далее к этому раствору при -15°C добавляют 10 г пористого кремния. Полученную суспензию выдерживают 1 ч при -15°C при интенсивном перемешивании. После чего температуру суспензии медленно (0,25°C/мин) поднимают до комнатной. Полученный осадок фильтруют, промывают водой, этанолом и ацетоном, сушат на воздухе.

После чего проводят термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч.

Пример 4

Приготовление золотопалладиевого катализатора, нанесенного на пористый углерод, содержащего 2,0 мас.% Pd и 7,4 мас.% Au.

К 10,0 г носителя (C) при комнатной температуре приливают, при тщательном перемешивании, 15,0 мл 0,125 М водного раствора K2[Pd(CN)4]. Далее пропитанный носитель сушат при температуре 80-90°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 15,0 мл 0,250 М водного раствора [Au(pap)2]Cl. Молярное соотношение Pd:Au на поверхности носителя составляет 1:2. Затем пропитанный носитель подвергают сушке при температуре 80-90°C в течение 12-16 ч.

После чего проводят обработку раствором гидразина или формальдегида или термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч. Затем катализатор промывают водой и этанолом, сушат при температуре 80-90°C в течение 12-16 ч.

Пример 5

Приготовление золотопалладиевого катализатора, нанесенного на пористый углерод, содержащего 2,0 мас.% Pd и 7,4 мас.% Au.

К 10,0 г носителя (C) при комнатной температуре приливают, при тщательном перемешивании, 15,0 мл 0,125 M водного раствора [Pd(dien)H2O](NO3)2. Далее пропитанный носитель сушат при температуре 80-90°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 15,0 мл 0,250 M водного раствора H[AuBr 4]. Молярное соотношение Pd:Au на поверхности носителя составляет 1:2. Затем пропитанный носитель подвергают сушке при температуре 80-90°C в течение 12-16 ч.

После чего проводят обработку раствором гидразина или формальдегида или термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч. Затем катализатор промывают водой и этанолом, сушат при температуре 80-90°C в течение 12-16 ч.

Пример 6

Приготовление золотопалладиевого катализатора, нанесенного на пористый оксид алюминия, содержащего 2,0 мас.% Pd и 7,4 мас.% Au.

К 10,0 г носителя (способ приготовления катализатора и способ получения пероксида   водорода, патент № 2526460 -Al2O3) при комнатной температуре приливают, при тщательном перемешивании, 12,0 мл 0,156 M водного раствора K2[Pd(C2O4)2 ]. Далее пропитанный носитель сушат при температуре 50-60°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 12,0 мл 0,312 M водного раствора [Au(HDMG)2]Cl. Молярное соотношение Pd:Au на поверхности носителя составляет 1:2. Затем пропитанный носитель подвергают сушке при температуре 80-90°C в течение 12-16 ч.

После чего проводят обработку раствором гидразина или формальдегида или термообработку в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч. Затем катализатор промывают водой и этанолом, сушат при температуре 80-90°C в течение 12-16 ч.

Примеры 7-8 иллюстрируют испытание катализаторов.

Пример 7

Процесс синтеза пероксида водорода путем окисления водорода молекулярным кислородом осуществляют на золотопалладиевом катализаторе, нанесенном на пористый углерод.

Реакцию проводят в проточном реакторе с неподвижным слоем гранулированного Pd-Au/C катализатора (180 мг), приготовленного по примеру 1, через который пропускают двухфазный газожидкостный поток 1 мл/мин смеси метанола с водой и 10,4 мл/мин газовой смеси (4% H 2, 96% O2). Реактор термостатируют при различных температурах. Полученные результаты приведены в таблице 1.

Таблица 1
Температура, °CКонцентрация H 2O2, моль/лВыход H 2O2, %
2 4,326,3
-55,5 33,8
-10 6,338,3
-146,338,3

Таким образом, как видно из примеров и таблиц, предлагаемое изобретение позволяет эффективно осуществлять процесс синтеза пероксида водорода путем окисления водорода молекулярным кислородом, при этом предлагаемый способ приготовления золотопалладиевых катализаторов максимально упрощается, достигается высокодисперсное состояние катализатора и его высокая активность. Так как в отличие от большинства других органических растворителей метанол или вода не образуют взрывоопасных пероксидов, то достигаются еще и условия безопасного проведения процесса.

Пример 8

Процесс синтеза пероксида водорода путем окисления водорода молекулярным кислородом осуществляют на золотопалладиевом катализаторе, нанесенном на пористый кремний.

Реакцию проводят в проточном реакторе, в котором находится 100 мл метанола, взвесь катализатора, приготовленного по примеру 3, (50-200 мг), через который с помощью дисперсера пропускают газовую смесь (4 об.% H2, 96 об.% O2) со скоростью 50 мл/мин. Реактор термостатируют при -10°C с одним слоем катализатора. Полученные результаты приведены в таблице 2.

Таблица 2
Время реакции, чКонцентрация H2 O2, моль/лКонверсия H 2, %Селективность, %
14,6 21,543,4
211,022,8 57,0
3 15,320,9 41,8
4 20,521,550,0

Пористый кремний или углерод обладают необходимыми текстурными характеристиками, позволяющими использовать их в проточных реакторах, хорошо смачиваются метанолом и/или водой, обладают механической стойкостью по сравнению с многими другими оксидными носителями. Оба этих носителя не содержат примесей переходных металлов, которые катализируют разложение пероксида водорода. Химическая стойкость позволяет обрабатывать носители кислотами и окислителями и тем самым добиваться необходимой чистоты и кислотности поверхности. Термообработка двойной комплексной соли-предшественника, содержащей оба металла в одной молекуле, позволяет получать биметаллические частицы, минимизируя образование монометаллических частиц палладия, активно разлагающих перекись водорода.

Класс B01J37/02 пропитывание, покрытие или осаждение

способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
вольфрамкарбидные катализаторы на мезопористом углеродном носителе, их получение и применения -  патент 2528389 (20.09.2014)
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
катализатор для процесса гидродепарафинизации и способ его получения -  патент 2527283 (27.08.2014)
катализатор для получения синтетических базовых масел и способ его приготовления -  патент 2525119 (10.08.2014)
конструктивный элемент с антимикробной поверхностью и его применение -  патент 2523161 (20.07.2014)
катализатор для получения синтетических базовых масел в процессе соолигомеризации этилена с альфа-олефинами с6-с10 и способ его приготовления -  патент 2523015 (20.07.2014)
способ получения каталитического покрытия для очистки газов -  патент 2522561 (20.07.2014)
способ изготовления металл-углерод содержащих тел -  патент 2520874 (27.06.2014)
катализатор на подложке из оксида алюминия, с оболочкой из диоксида кремния -  патент 2520223 (20.06.2014)

Класс B01J37/08 термообработка

способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
катализатор для процесса гидродепарафинизации и способ его получения -  патент 2527283 (27.08.2014)
катализатор для получения синтетических базовых масел и способ его приготовления -  патент 2525119 (10.08.2014)
способ активации молибден-цеолитного катализатора ароматизации метана -  патент 2525117 (10.08.2014)
способ получения каталитического покрытия для очистки газов -  патент 2522561 (20.07.2014)
способ получения катализатора полимеризации эпсилон-капролактама -  патент 2522540 (20.07.2014)
микросферический катализатор крекинга "октифайн" и способ его приготовления -  патент 2522438 (10.07.2014)
способ изготовления металл-углерод содержащих тел -  патент 2520874 (27.06.2014)
катализатор на подложке из оксида алюминия, с оболочкой из диоксида кремния -  патент 2520223 (20.06.2014)
катализаторы -  патент 2517700 (27.05.2014)

Класс B01J23/44 палладий

способ применения слоистых сферических катализаторов с высоким коэффициентом доступности -  патент 2517187 (27.05.2014)
способ приготовления катализатора для полного окисления углеводородов, катализатор, приготовленный по этому способу, и способ очистки воздуха от углеводородов с использованием полученного катализатора -  патент 2515510 (10.05.2014)
выхлопная система для двигателя внутреннего сгорания, работающего на бедной смеси, содержащая катализатор на основе сплава pd-au -  патент 2506988 (20.02.2014)
способ получения н-гептадекана гидродеоксигенированием стеариновой кислоты -  патент 2503649 (10.01.2014)
катализатор сжигания водорода, способ его получения и способ сжигания водорода -  патент 2494811 (10.10.2013)
способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя -  патент 2492160 (10.09.2013)
способ очистки сульфатного скипидара от сернистых соединений -  патент 2485154 (20.06.2013)
способ получения гетерогенного катализатора для получения ценных и энергетически насыщенных компонентов бензинов -  патент 2482917 (27.05.2013)
способ получения оксида палладия(ii) на поверхности носителя -  патент 2482065 (20.05.2013)
катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота -  патент 2480281 (27.04.2013)

Класс B01J23/52 золото

способ получения этилена -  патент 2528830 (20.09.2014)
катализатор для избирательного окисления монооксида углерода в смеси с аммиаком и способ его получения (варианты) -  патент 2515529 (10.05.2014)
катализатор для избирательного окисления монооксида углерода в смеси с аммиаком и способ его получения -  патент 2515514 (10.05.2014)
выхлопная система для двигателя внутреннего сгорания, работающего на бедной смеси, содержащая катализатор на основе сплава pd-au -  патент 2506988 (20.02.2014)
катализатор для селективной очистки этиленовых мономеров от примесей ацетиленовых углеводородов и способ селективной очистки этиленовых мономеров от примесей ацетиленовых углеводородов с его использованием -  патент 2501606 (20.12.2013)
катализатор для окислительного разложения хлорорганических соединений в газах и способ его получения -  патент 2488441 (27.07.2013)
способ получения катализатора на пористом металлооксидном носителе для окисления углеводов -  патент 2468861 (10.12.2012)
получение палладиевозолотых катализаторов -  патент 2457903 (10.08.2012)
адсорбент десульфуризатор для жидких фаз -  патент 2448771 (27.04.2012)
способ приготовления катализаторов и их применение для окисления олефинов в газовой фазе -  патент 2447939 (20.04.2012)

Класс C01B15/01 пероксид водорода

способ получения перекиси водорода -  патент 2494960 (10.10.2013)
водный раствор пероксида водорода, способ его получения и его использование -  патент 2468990 (10.12.2012)
способ получения диоксида хлора -  патент 2304558 (20.08.2007)
способ удаления пероксида водорода из воды -  патент 2288168 (27.11.2006)
способ получения щелочного раствора пероксида водорода и диоксида хлора -  патент 2221741 (20.01.2004)
способ идентификации водорода пероксида -  патент 2220094 (27.12.2003)
способ получения пероксида водорода для использования при отбелке целлюлозы -  патент 2117629 (20.08.1998)
способ очистки водного раствора пероксида водорода от уксусной кислоты -  патент 2064428 (27.07.1996)
способ стабилизации окислителя на основе высококонцентрированной перекиси водорода -  патент 2049721 (10.12.1995)
способ стабилизации окислителя на основе высококонцентрированной перекиси водорода -  патент 2049720 (10.12.1995)
Наверх