способ получения коллоидных растворов платины
Классы МПК: | B01J13/00 Коллоидная химия, например способы получения коллоидов или их растворов, не отнесенные к другим классам, изготовление полых пластмассовых шариков или микрокапсул C01G55/00 Соединения рутения, родия, палладия, осмия, иридия или платины B82B1/00 Наноструктуры |
Автор(ы): | Кудрявцев Юрий Дмитриевич (RU), Смирнова Нина Владимировна (RU), Куриганова Александра Борисовна (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" (RU) |
Приоритеты: |
подача заявки:
2009-02-26 публикация патента:
20.07.2011 |
Изобретение может быть использовано в производстве высокоселективных твердотельных катализаторов. Осуществляют электрохимическое взаимодействие платиновых электродов с раствором гидроксида щелочного металла концентрацией 2-6 моль/л при циклическом изменении полярности электродов с частотой 30-80 Гц при плотности тока 1 А/см 2 и температуре 30-35°С. Изобретение позволяет получать коллоидные растворы платины с размером частиц 10-500 нм.
Формула изобретения
Способ получения коллоидных растворов платины в результате электрохимического взаимодействия в условиях циклического изменения полярности электродов, отличающийся тем, что электрохимическое взаимодействие происходит при циклическом изменении полярности платиновых электродов с частотой 30-80 Гц при плотности тока 1 А/см2 в растворах гидроксидов щелочных металлов концентрацией 2-6 моль в литре при температуре 30-35°С.
Описание изобретения к патенту
Изобретение относится к способам получения коллоидных растворов платины, которые найдут применение в различных отраслях науки и техники, в частности при разработке новых типов высокоселективных твердотельных катализаторов.
Известен способ получения наночастиц (патент RU № 22650756, опубл. 2005), включающий в себя диспергирование расплавленного материала, подачу жидких капель этого материала в плазму электрического разряда, параметры которой удовлетворяют заданным соотношениям, образованную в инертном газе при давлении 10-3-10-1 Па, охлаждение в инертном газе образовавшихся в упомянутой плазме жидких наночастиц до затвердевания и нанесение полученных наночастиц на носитель. Недостатком этого способа является сложность технического оформления, так как для реализации этого способа используется установка плазменного электродиспергирования.
Известен способ получения наночастиц платиновых металлов (патент RU № 2333077, опубл. 2008), включающий в себя приготовление прямых или обратных мицелл с последующим восстановлением в них прекурсоров металлов. Перед приготовлением мицелл их концентрируют из водных растворов ионной флотацией или фотоэкстракцией с применением поверхностно-активных веществ (ПАВ) и углеводородов. Недостатком данного способа является необходимость отмывки спиртом полученных наночастиц от ПАВ.
Известен способ получения коллоидного раствора наночастиц металла (патент RU № 2006145511, опубл. 2008), включающий в себя растворение иодида соответствующего металл в метаноле, с последующим воздействием на полученный раствор физическим фактором. Воздействие осуществлялось путем облучения раствора источником света с длиной волны не более чем 6 мк. После чего раствор нагревают до температуры не более чем 50°С и добавляют четыреххлористый углерод. Недостатком способа является применение таких токсичных веществ, как метанол и четыреххлористый углерод, которые приводят к агломерации частиц металла.
Известен способ получения высокодисперсных порошков металлов (патент RU № 2302927, опубл. 2007). Металл нагревают до температуры кипения, испаряют и конденсируют пар, подавая струю пара металла в конденсатор, форма рабочей поверхности которого максимально приближена к форме струи истечения пара. Конденсацию и рост частиц металла осуществляют в зоне толщиной, приближенной к постоянной. Удаление осажденного порошка металла осуществляют непрерывно по всей рабочей поверхности конденсатора. Недостатком способа является необходимость нагрева металла до температуры кипения.
В качестве прототипа выбран способ получения коллоидных растворов металлов (патент RU № 2238140, опубл. 2004). Получение коллоидных растворов металлов, выбранных из второй группы и/или четвертого периода, проводилось в присутствии органического соединения, содержащего гетероатом - кислород или азот, и осуществлялось путем электрохимического взаимодействия. Электрохимическое взаимодействие осуществлялось при изменении скорости процесса растворения металла в условиях циклического изменения полярности электродов каждые 10 секунд при необходимости при постоянном снижении напряжения с 1,8 до. 0,2 В. Полученный конечный продукт - коллоидный раствор металла - имеет концентрацию 0,01-4 ммоль в литре и размеры частиц от 0,1 до 90 мкм. В качестве органического соединения можно применять насыщенные, ненасыщенные, ароматические сульфокислоты или их ангидриды, многоосновные карбоновые кислоты или их ангидриды, азотосодержащий водорастворимый полимер, первичные, вторичные, третичные амины, одно- или полиатомные спирты, кетоны, в том числе фруктозу, сахарозу, глюкозу. Недостатком этого способа является невозможность получения наноразмерных частиц металлов.
Задачей заявляемого способа является получение коллоидных растворов платины, размер частиц которых варьируется в интервале от 10 до 500 нм в зависимости от параметров процесса.
Решение поставленной задачи достигается тем, что электрохимическое взаимодействие происходит при циклическом изменении полярности электродов с частотой 30-80 Гц при плотности тока 1 А/см 2 в растворах гидроксидов щелочных металлов концентрацией 2-6 моль в литре при температуре 30-35°С.
При поляризации катионы щелочных металлов адсорбируются на поверхности платины, образуя интерметаллические соединения платины с щелочным металлом. Образование интерметаллического соединения и последующее его разложение водой способствуют разрыхлению платины и распылению ее в объеме электролита. Скорость данного процесса зависит от ряда факторов, одним из которых является температура. С ростом температуры скорость разрушения платины падает. При реверсе тока этот эффект имеет место в условиях как катодной, так и анодной поляризации. Кроме того, на скорость разрушения платины оказывает влияние частота переменного тока /А.И.Ионкин, В.М.Караваев, А.И.Кошелев, Ю.Д.Кудрявцев, В.Р.Сальман, Д.П.Семченко. Поляризация платины при электролизе переменным током. - В сб.: Исследования в области прикладной электрохимии. Новочеркасск, 1970 (Новочеркасский политехнический институт)/.
Техническим результатом заявляемого способа является получение коллоидного раствора платины, размер частиц которого варьируется в интервале от 10 до 500 нм.
Способ осуществляли методом электрохимического взаимодействия в условиях циклического изменения полярности платиновых электродов в растворах гидроксидов щелочных металлов. Для этого два платиновых электрода, выполненных из платиновой фольги, были помещены в раствор гидроксида щелочного металла, который подвергался электролизу переменным током.
Пример 1.
Коллоидный раствор платины получали при электролизе раствора гидроксида натрия концентрацией 2 моль в литре переменным током плотностью 1 А/см2, частотой 80 Гц. Температура раствора 30-35°С. Скорость разрушения платины составила 0,0250 г/см2 ·час, при этом дисперсность полученных частиц изменялась в диапазоне от 10 до 50 нм.
Пример 2.
Получение коллоидного раствора платины осуществляли путем разрушения двух платиновых электродов в растворе гидроксида калия концентрацией 2 моль в литре под действием переменного тока плотностью 1 А/см 2, частотой 30 Гц. Температура раствора 30-35°С. Скорость разрушения платины составила 0,0127 г/см2·час, при этом дисперсность полученных частиц изменялась в диапазоне от 10 до 80 нм.
Пример 3.
Коллоидный раствор платины получали путем разрушения двух платиновых электродов при электролизе раствора гидроксида калия концентрацией 6 моль в литре переменным током плотностью 1 А/см2, частотой 50 Гц. Температура раствора 30-35°С. Скорость разрушения платины составила 0,0504 г/см2·час, при этом дисперсность полученных частиц изменялась в диапазоне от 50 до 500 нм.
Таким образом, заявляемый способ обеспечивает получение коллоидных растворов платины, размер частиц которых варьируется в интервале от 10 до 500 нм в зависимости от параметров процесса и которые в дальнейшем могут быть использованы для получения твердотельных катализаторов.
Класс B01J13/00 Коллоидная химия, например способы получения коллоидов или их растворов, не отнесенные к другим классам, изготовление полых пластмассовых шариков или микрокапсул
Класс C01G55/00 Соединения рутения, родия, палладия, осмия, иридия или платины