турбовентиляторный двигатель с компактной системой отбора воздуха от дожимного компрессора

Классы МПК:F04D27/02 способы и устройства для устранения помпажа 
F02K3/075 управление соотношением расхода воздуха в контурах
F02C9/18 путем отбора, перепуска или путем воздействия на изменяемые связи по рабочему телу между турбинами, компрессорами или их ступенями
F01D17/10 конечные исполнительные механизмы
Автор(ы):
Патентообладатель(и):ДЖЕНЕРАЛ ЭЛЕКТРИК КОМПАНИ (US)
Приоритеты:
подача заявки:
2006-12-21
публикация патента:

Турбовентиляторный двигатель (10) содержит вентилятор (14), прикрепленный к раме (32) крепления вентилятора внутри гондолы (30) вентилятора. Дожимной компрессор (16) присоединен к вентилятору (14) внутри разделителя (34) потока. Гондола (30) окружает вентилятор (14) и разделитель (34) и отстоит от разделителя (34) для образования наружного контура (36) между ними. Рама (32) крепления вентилятора расположена за дожимным компрессором (16) и включает в себя ряд подкосов (38), проходящих по радиусу наружу через наружный контур (36) от кольцевой втулки (40), расположенной между дожимным компрессором (16) и компрессором (18) высокого давления. Система (54) отбора воздуха от дожимного компрессора расположена внутри разделителя (34) и включает в себя впускной канал (58) системы отбора, расположенный между дожимным компрессором (16) и втулкой (40), и выпускной канал (60) системы отбора, расположенный на заднем конце разделителя (34) перед подкосами (38). 6 з.п. ф-лы, 5 ил. турбовентиляторный двигатель с компактной системой отбора воздуха   от дожимного компрессора, патент № 2433312

турбовентиляторный двигатель с компактной системой отбора воздуха   от дожимного компрессора, патент № 2433312 турбовентиляторный двигатель с компактной системой отбора воздуха   от дожимного компрессора, патент № 2433312 турбовентиляторный двигатель с компактной системой отбора воздуха   от дожимного компрессора, патент № 2433312 турбовентиляторный двигатель с компактной системой отбора воздуха   от дожимного компрессора, патент № 2433312 турбовентиляторный двигатель с компактной системой отбора воздуха   от дожимного компрессора, патент № 2433312

Формула изобретения

1. Турбовентиляторный двигатель (10), содержащий вентилятор (14), дожимной компрессор (16), компрессор (18) высокого давления, камеру (20) сгорания, первую турбину (22) и вторую турбину (24), расположенные соосно с обеспечением последовательного сообщения по потоку;

разделитель (34) потока, окружающий дожимной компрессор (16) за вентилятором (14);

гондолу (30), окружающую вентилятор (14) и разделитель (34) и отстоящую от разделителя (34) для образования наружного контура (36) между ними;

раму (32) крепления вентилятора, расположенную за дожимным компрессором (16) и включающую в себя ряд подкосов (38), проходящих по радиусу наружу через наружный контур (36) от кольцевой втулки (40), расположенной между дожимным компрессором (16) и компрессором (18) высокого давления;

систему (54) отбора воздуха от дожимного компрессора, расположенную внутри разделителя (34) и включающую в себя впускной канал (58) системы отбора, расположенный между дожимным компрессором (16) и втулкой (40), и выпускной канал (60) системы отбора, расположенный на заднем конце разделителя (34) перед подкосами (38); при этом дожимной компрессор (16) включает в себя выходной канал (52) перед лопастями (50);

впускной канал (58) системы отбора содержит кольцевой паз, проходящий по радиусу наружу от выходного канала (52) дожимного компрессора, и включает в себя ряд входных лопастей (64) системы отбора, отстоящих друг от друга в окружном направлении;

выпускной канал (60) системы отбора содержит множество заслонок (66), проходящих в окружном направлении вокруг заднего конца разделителя (34) по радиусу наружу от лопастей (64) системы отбора;

внутри разделителя (34) между впускным каналом (58) системы отбора и выпускным каналом (60) системы отбора расположен клапан (62), который также расположен по радиусу между лопастями (64) системы отбора и заслонками (66), для выборочного блокирования отбираемого потока между дожимным компрессором (16) и наружным контуром;

впускной канал (58) системы отбора разделен на внутренний и наружный пазы (58, 68);

лопасти (64) системы отбора окружают выходной канал (52) дожимного компрессора и имеют изогнутый по оси профиль;

наружный паз (68) окружает внутренний паз и проходит по радиусу наружу от него; и

внутренний и наружный пазы имеют в себе соответствующие лопасти (64, 70) системы отбора.

2. Двигатель по п.1, дополнительно содержащий ряд выходных направляющих лопастей (50), расположенных между дожимным компрессором (16) и втулкой (40), причем впускной канал (58) системы отбора расположен между дожимным компрессором (16) и лопастями (50).

3. Двигатель по п.1, в котором клапан (62) является цилиндрическим и установлен в системе (54) отбора с возможностью поступательного перемещения по оси между лопастями (64) системы отбора и заслонками (66).

4. Двигатель по п.3, содержащий множество исполнительных механизмов (72), присоединенных к клапану (62) для обеспечения его выборочного поступательного перемещения по оси.

5. Двигатель по п.1, в котором впускной паз (58) имеет изогнутый по оси профиль, проходящий по радиусу наружу; причем лопасти (64, 70) системы отбора изогнуты в окружном направлении внутри паза, изогнутого по оси, при этом заслонки (66) имеют профили, изогнутые по оси.

6. Двигатель по п.5, в котором клапан (62) установлен на раме (32) крепления вентилятора посредством множества аксиальных болтов (78), имеющих установленные на них пружины (80) сжатия для поджима закрытого клапана (62) над лопастями (64, 70) системы отбора.

7. Двигатель по п.5, в котором клапан (62) герметично закрыт, когда он расположен над лопастями системы отбора, для предотвращения отбора воздуха от дожимного компрессора (16).

Описание изобретения к патенту

Настоящее изобретение относится в целом к газотурбинным двигателям и, в частности, к их системам отбора.

Известен турбовентиляторный (или турбореактивный двухконтурный) авиационный двигатель, включающий в себя вентилятор, установленный внутри окружающей гондолы, и приводящийся в действие турбиной низкого давления (см., например, патент США № 4674951). Внутренняя часть воздуха, направленного через вентилятор, поступает в основной двигатель, в котором осуществляется повышение давления воздуха в компрессоре высокого давления, и воздух смешивается с топливом в камере сгорания для образования горячих газообразных продуктов сгорания. Энергия отбирается от газообразных продуктов сгорания в турбине высокого давления, которая обеспечивает приведение в действие компрессора.

Наружная часть воздуха из вентилятора проходит в обход центрального двигателя по кольцевому наружному (или второму) контуру. Воздух под давлением, выходящий из наружного контура, обеспечивает большую часть тягового усилия двигателя для обеспечения полета воздушного судна.

В больших турбовентиляторных двигателях дополнительная мощность вырабатывается посредством включения компрессора низкого давления или дожимного компрессора (бустер-компрессора) в конструкцию за вентилятором и перед компрессором высокого давления, предусмотренным в основном двигателе. Дожимной компрессор, как правило, включает в себя множество осевых ступеней, которые обеспечивают повышение давления воздуха, выходящего из вентилятора и подаваемого к компрессору высокого давления, который, в свою очередь, включает в себя множество осевых ступеней, обеспечивающих дополнительное повышение давления воздуха, подаваемого в камеру сгорания.

Типовой турбовентиляторный авиационный двигатель выполнен с конфигурацией, обеспечивающей его работу во всем диапазоне режимов полета, включая режим малого газа, взлет, набор высоты, полет на крейсерской скорости, заход на посадку и посадку, при которых выходная мощность двигателя соответственно изменяется. Например, множество осевых ступеней дожимного компрессора и компрессора высокого давления должны быть спроектированы и должны работать для получения соответствующего запаса по помпажу во всем диапазоне режимов работы двигателя. Для работы двигателя при максимальной мощности компрессоры приводятся в действие при максимальном воздушном потоке и максимальном повышении давления с соответствующим запасом по помпажу.

Однако при полете в условиях режима малого газа при заходе воздушного судна на посадку двигатель вырабатывает сравнительно небольшую мощность, и компрессор высокого давления требует соответственно меньшего воздушного потока, проходящего через него. Для поддержания эффективной работы двигателя при условиях частичной мощности и поддержания соответствующего запаса по помпажу в компрессоре высокого давления часть воздуха под давлением, выходящего из дожимного компрессора, как правило, отводится от двигателя и направляется в наружный контур вентилятора.

Соответственно, система отбора воздуха от дожимного компрессора, как правило, предусмотрена в больших турбовентиляторных авиационных двигателях для выборочного отбора части воздуха, выходящего из дожимного компрессора, когда это желательно, для поддержания эффективной работы двигателя, включая соответствующий запас по помпажу компрессора.

Типовая система отбора воздуха от дожимного компрессора является сравнительно большой по размеру и сравнительно сложной и расположена между дожимным компрессором и компрессором высокого давления. Например, турбовентиляторный двигатель включает в себя раму крепления вентилятора, расположенную между двумя компрессорами. Рама крепления включает в себя ряд подкосов, проходящих по радиусу наружу через наружный контур вентилятора для обеспечения опоры для гондолы вентилятора.

Рама крепления также включает в себя центральную несущую втулку, имеющую ряд проточных переходных каналов, чередующихся между внутренними концами подкосов для обеспечения непрерывного потока между выходным каналом дожимного компрессора и входом компрессора высокого давления. Втулка также включает в себя одну или несколько опор подшипников, которые содержат подшипники для обеспечения опоры для приводного вала вентилятора, который соединяет вентилятор с турбиной низкого давления. Рабочие лопатки дожимного компрессора также присоединены к приводному валу вентилятора.

В большом турбовентиляторном двигателе рама крепления вентилятора также будет соответственно большой, с соответственно большой центральной втулкой, в которую может быть встроена типовая система отбора воздуха от дожимного компрессора. Однако включение данной системы отбора соответственно требует наличия входных отверстий во втулке для отбора воздуха от дожимного компрессора. Кроме того, требуются выходные отверстия во втулке для направления отбираемого от компрессора воздуха в соответствующие выходные каналы в наружном контуре вентилятора.

Любой проход или отверстие, выполненное в несущей втулке рамы крепления вентилятора, нарушает ее конструктивную целостность и соответственно требует усиления втулки, что, как правило, приводит к увеличению размера и массы рамы крепления вентилятора. Система отбора также требует множества впускных клапанов или створок и соответствующих исполнительных механизмов для выборочного открытия и закрытия створок для отбора, когда это необходимо при работе двигателя.

Система отбора, установленная внутри типовой рамы крепления вентилятора большого турбовентиляторного двигателя, приводит к увеличению затрат на изготовление двигателя, увеличению массы двигателя и, соответственно, к уменьшению общего кпд двигателя.

В процессе непрерывного совершенствования турбовентиляторных авиационных газотурбинных двигателей с большой степенью двухконтурности желательно обеспечить уменьшение размера и массы двигателя без соответствующего уменьшения номинальной мощности. В одном двигателе, который подвергается усовершенствованию, рама крепления вентилятора включает в себя сравнительно небольшую центральную втулку, в которой отсутствует доступное пространство для введения обычной системы отбора воздуха от дожимного компрессора.

Кроме того, компоненты, примыкающие к раме крепления вентилятора, имеют ограниченное доступное пространство для монтажа самих этих компонентов без дополнительного усложнения, связанного с введением соответствующей системы отбора воздуха от дожимного компрессора.

Соответственно, желательно создать турбовентиляторный авиационный двигатель с усовершенствованной системой отбора воздуха от дожимного компрессора, которая является сравнительно компактной и простой и имеет небольшую высоту для обеспечения ее встраивания в доступное пространство в двигателе.

Согласно настоящему изобретению создан турбовентиляторный двигатель, содержащий вентилятор, дожимной компрессор, компрессор высокого давления, камеру сгорания, первую турбину и вторую турбину, расположенные соосно с обеспечением последовательного сообщения по потоку; разделитель потока, окружающий дожимной компрессор за вентилятором; гондолу, окружающую вентилятор и разделитель и отстоящую от разделителя для образования наружного контура между ними; раму крепления вентилятора, расположенную за дожимным компрессором и включающую в себя ряд подкосов, проходящих по радиусу наружу через наружный контур от кольцевой втулки, расположенной между дожимным компрессором и компрессором высокого давления; систему отбора воздуха от дожимного компрессора, расположенную внутри разделителя и включающую в себя впускной канал системы отбора, расположенный между дожимным компрессором и втулкой, и выпускной канал системы отбора, расположенный на заднем конце разделителя перед подкосами; при этом дожимной компрессор включает в себя выходной канал перед лопастями; впускной канал системы отбора содержит кольцевой паз, проходящий по радиусу наружу от выходного канала дожимного компрессора, и включает в себя ряд входных лопастей системы отбора, отстоящих друг от друга в окружном направлении; выпускной канал системы отбора содержит множество заслонок, проходящих в окружном направлении вокруг заднего конца разделителя по радиусу наружу от лопастей системы отбора; внутри разделителя между впускным каналом системы отбора и выпускным каналом системы отбора расположен клапан, который также расположен по радиусу между лопастями системы отбора и заслонками, для выборочного блокирования отбираемого потока между дожимным компрессором и наружным контуром; впускной канал системы отбора разделен на внутренний и наружный пазы; лопасти системы отбора окружают выходной канал дожимного компрессора и имеют изогнутый по оси профиль; наружный паз окружает внутренний паз и проходит по радиусу наружу от него; и внутренний и наружный пазы имеют в себе соответствующие лопасти системы отбора.

Двигатель может дополнительно содержать ряд выходных направляющих лопастей, расположенных между дожимным компрессором и втулкой, причем впускной канал системы отбора расположен между дожимным компрессором и лопастями.

Предпочтительно, клапан является цилиндрическим и установлен в системе отбора с возможностью поступательного перемещения по оси между лопастями системы отбора и заслонками.

Кроме того, двигатель может дополнительно содержать множество исполнительных механизмов, присоединенных к клапану для обеспечения его выборочного поступательного перемещения по оси.

Предпочтительно, впускной паз имеет изогнутый по оси профиль, проходящий по радиусу наружу; причем лопасти системы отбора изогнуты в окружном направлении внутри паза, изогнутого по оси, при этом заслонки имеют профили, изогнутые по оси.

Клапан может быть установлен на раме крепления вентилятора посредством множества аксиальных болтов, имеющих установленные на них пружины сжатия для поджима закрытого клапана над лопастями системы отбора.

Преимущественно, клапан герметично закрыт, когда он расположен над лопастями системы отбора, для предотвращения отбора воздуха от дожимного компрессора.

Изобретение в соответствии с предпочтительными и приведенными в качестве примера вариантами его осуществления, а также его дополнительные цели и преимущества более подробно описаны в нижеприведенном подробном описании, рассматриваемом совместно с прилагаемыми чертежами, на которых:

фиг.1 - частичный схематический вид в осевом сечении авиационного турбовентиляторного газотурбинного двигателя;

фиг.2 - вид в осевом сечении в увеличенном масштабе системы отбора воздуха от дожимного компрессора, проиллюстрированной в турбовентиляторном двигателе с фиг.1, которая показана с закрытым выпускным клапаном;

фиг.3 - вид в осевом сечении в дополнительно увеличенном масштабе системы отбора, проиллюстрированной на фиг.2, которая показана с открытым выпускным клапаном;

фиг.4 - вид в радиальном сечении по линии 4-4 части системы отбора, проиллюстрированной на фиг.3; и

фиг.5 - выполненный с частичным сечением по линии 5-5 вид в плане части системы отбора, проиллюстрированной на фиг.3.

На фиг.1 схематически проиллюстрирован турбовентиляторный авиационный газотурбинный двигатель 10, выполненный с конфигурацией, обеспечивающей приведение в движение воздушного судна (не показано) в полете от взлета до полета на крейсерской скорости и до посадки в типовом цикле работы во всем диапазоне режимов полета. Двигатель является осесимметричным относительно продольной или центральной осевой линии 12 и соответствующим образом прикреплен к крылу или фюзеляжу воздушного судна.

Двигатель включает в себя расположенные последовательно с сообщением по потоку вентилятор 14, дожимной компрессор 16, или компрессор 16 низкого давления, компрессор 18 высокого давления, камеру 20 сгорания, турбину 22 высокого давления и турбину 24 низкого давления. Турбина 22 высокого давления, или первая турбина, присоединена посредством одного приводного вала к компрессору 18 высокого давления. Турбина 24 низкого давления, или вторая турбина 24, присоединена посредством другого приводного вала как к вентилятору 14, так и к дожимному компрессору 16.

При обычной работе вентилятор 14 осуществляет повышение давления воздуха 26, и внутренняя часть данного воздуха направляется через дожимной компрессор 16, который обеспечивает дополнительное повышение давления воздуха. Воздух под давлением затем направляется в компрессор 18 высокого давления, который обеспечивает дополнительное повышение давления воздуха.

Воздух под давлением смешивается с топливом в камере 20 сгорания для образования горячих газообразных продуктов 28 сгорания, которые проходят дальше по очереди через турбину 22 высокого давления и турбину 24 низкого давления. Энергия отбирается в двух турбинах для приведения в действие вентилятора 14, дожимного компрессора 16 и компрессора 18 высокого давления обычным образом.

Турбовентиляторный двигатель, показанный на фиг.1, выполнен с конфигурацией, обеспечивающей его работу с высокой степенью двухконтурности, и включает в себя короткую гондолу 30 вентилятора, окружающую вентилятор 14 и закрепленную над кольцевой рамой 32 крепления вентилятора. Дожимной компрессор 16 соответствующим образом присоединен к вентилятору 14 впереди от рамы 32 крепления вентилятора и расположен по радиусу внутри кольцевого разделителя 34 потока, отстоящего от внутренней поверхности гондолы 30 вентилятора внутри нее для образования передней части кольцевого наружного контура 36 вентилятора между ними.

Разделитель 34 потока представляет собой кожух из листового металла, окружающий дожимной компрессор 16 непосредственно за вентилятором 14, и включает в себя острую переднюю кромку, которая разделяет выходящий из вентилятора воздух 26, давление которого повышено посредством вентилятора 14, на внутренний по радиусу поток, направляемый через дожимной компрессор, и наружный по радиусу поток, направляемый через наружный контур 36.

Базовый турбовентиляторный двигатель, показанный на фиг.1, является обычным по конструкции и работе для обеспечения полета воздушного судна. Вентилятор 14 включает в себя ряд лопаток вентилятора, проходящих по радиусу наружу от опорного диска ротора.

Дожимной компрессор 16 включает в себя множество ступеней, таких как три проиллюстрированные ступени, имеющих соответствующие лопатки ротора компрессора, проходящие по радиусу наружу от опорного диска ротора или каскада, который, в свою очередь, неподвижно присоединен к опорному диску вентилятора 14 и к соответствующему приводному валу, соединенному с дисками ротора турбины 24 низкого давления.

Аналогичным образом, компрессор 18 высокого давления включает в себя множество рядов или ступеней лопаток ротора компрессора, присоединенных посредством соответствующего приводного вала к диску ротора турбины 22 высокого давления.

Как компрессоры 16, 18, так и турбины 22, 24 имеют соответствующие лопатки статора, установленные перед соответствующими лопатками ротора и взаимодействующие для сжатия воздушного потока в компрессорах, в то время как газообразные продукты сгорания расширяются в турбинах обычным образом.

Как указано выше, приведенный в качестве примера турбовентиляторный двигатель 10, показанный на фиг.1, имеет усовершенствованную конструкцию для максимизации его номинальной мощности (тяги) при одновременной минимизации размера. В частности, новая рама 32 крепления вентилятора является сравнительно компактной по сравнению с обычно имеющей большие размеры рамой крепления вентилятора и расположена в ограниченном доступном пространстве между дожимным компрессором 16 и компрессором 18 высокого давления.

Компактная рама 32 крепления вентилятора включает в себя ряд полых подкосов 38 рамы крепления, проходящих по радиусу наружу через наружный контур 36 вентилятора для обеспечения опоры для гондолы 30, соответствующим образом прикрепленной к ним. Подкосы 38 проходят наружу от кольцевой несущей втулки 40.

Центральная втулка 40 включает в себя ряд переходных проточных каналов 42, расположенных в окружном направлении между внутренними по радиусу концами соответствующих подкосов 38. Втулка также включает в себя множество кольцевых опор 44 подшипников, проходящих по радиусу внутри, которые, в свою очередь, обеспечивают опору для соответствующих подшипников 46; при этом на фиг.1 показаны подобные три опоры и три подшипника. Рама крепления вентилятора посредством ее втулки обеспечивает опору для приводного вала 48 вентилятора с возможностью вращения вала, при этом приводной вал 48 присоединен как к диску ротора вентилятора 14, так и к роторам дожимного компрессора 16.

Как показано на фиг.1 и 2, двигатель дополнительно включает в себя ряд обычных выходных направляющих лопастей 50, расположенных между последней ступенью дожимного компрессора 16 и втулкой 44 рамы крепления вентилятора у кольцевого выходного канала 52 дожимного компрессора. Выходные направляющие лопатки 50 имеют соответствующую конфигурацию аэродинамической поверхности, как правило, для устранения вихревого движения воздуха, выходящего из дожимного компрессора, пока он проходит через переходные каналы 42 во входной канал компрессора 18 высокого давления.

Ряд переходных каналов 42 вместе образует сегментированное кольцевое пространство, которое соединяет выходной канал 52 дожимного компрессора с компрессором высокого давления с обеспечением сравнительно сильной связи между ними и в пределах минимального имеющегося пространства. Кроме того, наружная часть втулки 44, показанная на фиг.2 между переходными каналами 42 и наружным контуром 36, также является сравнительно небольшой и компактной, и в ней отсутствует достаточный объем для встраивания обычной системы отбора, описанной выше со ссылкой на предшествующий уровень техники.

Соответственно, имеющая малую высоту или компактная система, или устройство 54 для отбора воздуха от дожимного компрессора расположена (-о) большей частью на заднем конце разделителя 34, как схематически показано на фиг.1 и более подробно - на фиг.2. Как показано на фиг.2, задний конец разделителя 34 расходится там, где он стыкуется с рамой 32 крепления вентилятора, и образует кольцевую камеру 56, в которой может быть установлена большая часть компактной системы 54 отбора, если не вся данная система.

Более точно, система 54 отбора включает в себя впускной канал 58 системы отбора, расположенный по оси между дожимным компрессором 16 и втулкой 44 с обеспечением сообщения по потоку с выходным каналом 52 компрессора. Соответственно, система отбора также включает в себя выпускной канал 60 системы отбора, расположенный на заднем конце разделителя 34 потока перед подкосами 38 с обеспечением сообщения по потоку с наружным контуром 36.

Таким образом, может быть осуществлен отбор части воздуха под давлением, выходящего из дожимного компрессора 16, по радиусу наружу через разделитель 34 потока и выпуск его в наружный контур 36 вентилятора для обхода основного двигателя и компрессора 18 высокого давления в нем. Впускной канал 58 системы отбора целесообразно расположен между последним рядом лопаток ротора в дожимном компрессоре 16 и выходными направляющим лопастями 50 без существенного увеличения интервала между ними, в котором находится выходной канал 52 компрессора, и без отрицательного воздействия на эксплуатационные характеристики компрессоров.

Для регулирования отбираемого потока выпускной клапан 62 расположен внутри разделителя 34 между впускным каналом 58 системы отбора и выпускным каналом 60 системы отбора для выборочного открытия и перекрытия отбираемого потока между дожимным компрессором и наружным контуром.

На фиг.2 выпускной клапан 62 показан полностью закрытым в его переднем по оси положении. На фиг.3 выпускной клапан 62 показан полностью открытым в его заднем по оси положении. На обоих чертежах предпочтительный вариант впускного канала 58 системы отбора выполнен в виде кольцевого паза, соосного с центральной осью двигателя и ограниченного передней стенкой, которая представляет собой заднюю выступающую часть наружного корпуса дожимного компрессора, и задней стенкой, которая представляет собой переднюю выступающую часть наружного бандажа, служащего опорой выходным направляющим лопастям 50.

Впускной канал 58 в виде кольцевого паза проходит по радиусу наружу от выходного канала 52 компрессора и включает в себя ряд входных лопастей 64 системы отбора, отстоящих друг от друга в окружном направлении.

Соответственно, выпускной канал 60 системы отбора образован между множеством выходных заслонок 66, проходящих в окружном направлении вокруг заднего конца разделителя 34 непосредственно перед подкосами 38. Заслонки 66 обеспечивают размещение выпускного канала 60 системы отбора по радиусу снаружи по отношению к лопастям 64 системы отбора и выровненным по радиусу относительно лопастей 64 системы отбора, находящихся во впускном канале 58 системы отбора.

Соответственно, клапан 62 является цилиндрическим, причем он установлен в системе отбора соосно с центральной осью двигателя с возможностью осевого поступательного перемещения между лопастями 64 системы отбора и заслонками 66 системы отбора. Клапан расположен по радиусу между лопастями 64 и заслонками 66 для выборочного блокирования отбираемого потока между ними, когда клапан поступательно перемещается в осевом направлении вперед к его закрытому положению, показанному на фиг.2, в то время как деблокировка отбираемого потока происходит, когда клапан поступательно перемещается назад в его открытое положение, показанное на фиг.3.

Как впускной канал 58 системы отбора, так и выпускной канал 60 системы отбора сконструированы для обеспечения их максимального аэродинамического качества для эффективного отбора воздуха под давлением от дожимного компрессора и выпуска его наружу в наружный контур 36 вентилятора. Как показано на фиг.3 и 4, впускной канал системы отбора предпочтительно разделен на внутренний паз 58 и окружающий кольцевой наружный паз 68.

Внутренний паз 58 непосредственно окружает выходной канал 52 компрессора и имеет изогнутый по оси профиль, который обеспечивает поворот отбираемого воздуха от направления по существу по оси назад в направлении по радиусу наружу. Внутренний паз 58 определяет границы утопленного воздухозаборника, расположенного по существу вровень с наружной границей тракта выходного канала 52 компрессора, при этом задняя стенка паза 58 имеет острую переднюю кромку для эффективного отвода отбираемого воздуха из выходного канала компрессора.

Наружный паз 68 коаксиально окружает внутренний паз 58 и проходит прямо по радиусу наружу от него с обеспечением выравнивания относительно внутреннего паза 58 в радиальном направлении. Наружный паз 68 включает в себя соответствующий ряд наружных лопастей 70 системы отбора, которые предпочтительно совпадают или совмещены с соответствующими внутренними лопастями 64, установленными во внутреннем пазе 58.

В предпочтительном варианте осуществления, проиллюстрированном на фиг.2, например, внутренний паз 58 может быть образован в одном кольцевом элементе, который соответствующим образом прикреплен болтами на его заднем конце к втулке 40 и на его переднем конце к наружному корпусу дожимного компрессора 16. Наружный паз 68 может быть образован в другом кольцевом элементе, который, как правило, прикреплен на его заднем конце только к втулке 40 непосредственно над внутренним пазом 58. Соответствующее кольцевое уплотнение может быть вставлено между каркасными элементами двух пазов 58, 68 для уплотнения вместе двух каркасных элементов, а также для уплотнения наружного каркаса, содержащего наружный паз 68, относительно передней стороны втулки 40 рамы крепления вентилятора.

Как показано на фиг.2 и 5, цилиндрический клапан 62 присоединен к множеству обычных линейных исполнительных механизмов 72 для выборочного осевого поступательного перемещения клапана. Например, два из исполнительных механизмов 72 могут иметь выходные штоки, присоединенные к синхронизирующему кольцу 74, при этом кольцо 74, в свою очередь, присоединено посредством множества соединительных элементов 76 к заднему концу цилиндрического клапана 62.

Четыре из соединительных элементов 76 могут быть равномерно распределены по окружной периферии клапана 62, проходить через соответствующие небольшие сквозные отверстия в передней стороне втулки 40 и обычно присоединяться к передней стороне синхронизирующего кольца 74. Два исполнительных механизма 72 могут также отстоять друг от друга, причем они могут быть соответствующим образом установлены внутри втулки 40 или снаружи ее заднего конца, если это допускает пространство.

Поскольку впускные пазы 58, 68 могут иметь сравнительно небольшую длину по оси, ход клапана 62 в осевом направлении является соответственно небольшим и перемещение исполнительных механизмов 72 в осевом направлении также является соответственно небольшим. Соответственно, исполнительные механизмы 72, синхронизирующее кольцо 74 и соединительные элементы 76 могут быть выполнены с такими малыми размерами, какие возможны на практике, для обеспечения их размещения в небольшой ограниченной зоне в пределах наружной части втулки 40 рамы крепления вентилятора под наружным контуром 36 вентилятора.

Как указано выше, внутренний паз 58 может быть рациональным образом выполнен в виде цельного кольца и рациональным образом закреплен на месте болтами между задним концом дожимного компрессора 16 и передней поверхностью втулки 40 рамы крепления вентилятора. Например, внутренний паз 58 может быть выполнен на его заднем конце за одно целое с наружным бандажом, служащим опорой выходным направляющим лопастям 50. Передний конец внутреннего паза 58 может быть выполнен за одно целое с кольцевым корпусом или кожухом, окружающим последнюю ступень лопаток ротора дожимного компрессора.

Соответственно, наружный паз 68 может быть рациональным образом образован в едином кольцевом элементе или цилиндре, задний конец которого прикреплен к втулке 40, а передний конец которого просто опирается или выступает в виде консоли над внутренним пазом 58, при этом между ними расположено соответствующее кольцевое уплотнение.

Кроме того, цилиндрический клапан 62 установлен концентрически вокруг наружного паза 68 в компактном составном узле из трех колец внутри ограниченного пространства камеры 56 разделителя. Цилиндрический клапан 62 включает в себя дальний передний конец, который взаимодействует с соответствующим Р-уплотнением на переднем конце наружного паза 68, и задний уступ и другое Р-уплотнение, которое взаимодействует с задним уступом наружного паза 68, когда клапан закрыт. Таким образом, клапан 62 соответствующим образом герметично уплотнен над наружными лопастями 70 системы отбора, когда он закрыт для полного предотвращения отбора какого-либо воздуха от дожимного компрессора 16.

Поскольку отбор воздуха от дожимного компрессора желателен только при частичной мощности, например при полете в режиме малого газа, система отбора будет оставаться закрытой в течение большей части рабочего цикла двигателя и любая утечка в системе отбора в течение этого времени соответственно привела бы к снижению кпд двигателя.

Когда клапан 62 открыт, как показано на фиг.3, отбор воздуха от дожимного компрессора может быть осуществлен простым и аэродинамически эффективным образом. Например, впускной канал 58 системы отбора "тесно" связан с выпускным каналом 60 системы отбора в ограниченном пространстве камеры 56 разделителя. Соответственно впускной канал 58 в виде внутреннего паза и лопасти 64 имеют профили, изогнутые по оси, для изменения направления исходного осевого воздушного потока 26 из задней части компрессора на направление по радиусу наружу, при этом осуществляется плавный аэродинамически эффективный поворот или отклонение данного потока в прямой, проходящий по радиусу наружу наружный паз 68.

Кроме того, лопасти 64, 70 системы отбора, как показано на фиг.4, могут быть соответствующим образом искривлены или изогнуты в окружном направлении для устранения вихревого движения воздуха, выходящего из дожимного компрессора, при его выпуске по радиусу наружу в наружный контур 36 вентилятора. Или же лопасти могут быть выполнены с иной конфигурацией для завихрения или выпрямления воздушного потока так, как желательно для конкретных случаев применения.

Соответственно, заслонки 66 в выпускном канале 60 системы отбора имеют профили, изогнутые по оси, выступающие по радиусу наружу в направлении назад с тем, чтобы снова повернуть поток, выходящий из наружного паза 68 по радиусу, в осевом направлении назад с тем, чтобы фактически смешать его с потоком, проходящим в обход вентилятора назад через наружный контур 36.

Как исходно показано на фиг.2, цилиндрический клапан 62 является сравнительно небольшим, имеет небольшую высоту и установлен рациональным образом в задней камере 56 разделителя над впускным каналом 58 системы отбора. Для открытия или перекрытия траектории отбираемого потока требуется простое поступательное перемещение по оси клапана 62. Как указано выше, соответствующие приводные средства включают в себя исполнительные механизмы 72, синхронизирующее соединительное звено 74 и соединительные элементы 76, установленные во втулке 49, причем пространство обеспечивает выборочное поступательное перемещение кольцевого клапана 62, когда это желательно. Исполнительные механизмы 72 могут быть присоединены соответственно к системе управления двигателем обычным образом.

Несмотря на то что исполнительные механизмы 72 могут быть использованы для перемещения клапана 62 в виде заслонки в открытое и закрытое положение, клапан 62 предпочтительно прикреплен к раме 32 крепления вентилятора посредством множества отстоящих друг от друга в окружном направлении аксиальных болтов 78. Болты проходят через задний радиальный фланец клапана 62 в виде заслонки и соответствующим образом неподвижно прикреплены к втулке 40 в кольцевом фланце, выполненном с конфигурацией, специально предназначенной для этого.

Четыре из болтов 78 могут равномерно отстоять друг от друга, при этом каждый болт имеет соответствующую пружину 80 сжатия, установленную концентрически на нем для поджима клапана 62 в закрытое положение над лопастями 64, 70 системы отбора.

На фиг.2 показана растянутая пружина 80 сжатия, которая обеспечивает приложение действующего в направлении вперед усилия к клапану 62 в виде заслонки для закрытия клапана над наружным пазом 68 и сжатия соответствующих уплотнений.

На фиг.3 и 5 показано приведение в действие исполнительных механизмов 72, которые тянут соединительные элементы 76 в направлении назад для поступательного перемещения клапана 62 назад из положения над лопастями системы отбора, при этом пружина 80 сжатия сжимается между соответствующими фланцами клапана и опорной конструкцией.

Особое преимущество системы отбора от дожимного компрессора, раскрытой выше, заключается в ее сравнительно простой конфигурации и компактном размере, обеспечивающих ее удобное размещение в пределах небольшого доступного пространства, имеющегося в задней камере 56 разделителя непосредственно перед рамой крепления вентилятора. Впускной канал 58, 68 системы отбора и взаимодействующий с ним выпускной клапан 62 могут быть рациональным образом выполнены в виде кольцевых или цилиндрических конструктивных элементов, включенных в конструкцию по радиусу вместе в виде компактного узла. Осевое перемещение выпускного клапана 62 является сравнительно небольшим и может быть осуществлено посредством любого пригодного приводного механизма, установленного в двигателе там, где позволяет пространство.

В приведенном в качестве примера варианте осуществления, показанном на фиг.2, четыре соединительных элемента 76 могут проходить через небольшие отверстия для доступа, выполненные вокруг обода втулки 40 рамы крепления вентилятора, и рациональным образом согласованно приводятся в действие посредством небольших исполнительных механизмов 72, координация которых обеспечивается синхронизирующим кольцом 74.

Соответственно, не требуется выполнять во втулке 40 рамы крепления множество сравнительно больших отверстий для встраивания соответствующего множества выпускных створок или клапанов, используемых в обычной системе отбора в больших турбовентиляторных двигателях. Следовательно, втулка сохраняет свою конструктивную целостность и может оставаться сравнительно небольшой и легкой, и при этом не требуется ее усиление для размещения обычных выпускных клапанов или створок.

Кроме того, приводная система для кольцевых клапанов 62 является сравнительно простой и имеет сравнительно небольшое число компонентов в отличие от приводной системы, необходимой для множества отдельных поворотных клапанов, которые можно обнаружить в обычной системе отбора.

Несмотря на то что здесь были описаны те варианты, которые рассматриваются как предпочтительные и приведенные в качестве примера варианты осуществления настоящего изобретения, другие модификации изобретения должны быть очевидными для специалистов в данной области техники из приведенных здесь идей, и, следовательно, желательно, чтобы все подобные модификации, которые находятся в пределах истинной сущности и объема изобретения, были защищены в приложенной формуле изобретения.

Соответственно, желательно защитить патентом изобретение в том виде, как оно определено в нижеприведенной формуле изобретения.

Класс F04D27/02 способы и устройства для устранения помпажа 

способ диагностики помпажа компрессора газотурбинного двигателя -  патент 2527850 (10.09.2014)
многоступенчатый компрессор турбомашины -  патент 2525997 (20.08.2014)
лопатки вентилятора с изменяемым углом установки -  патент 2523928 (27.07.2014)
стравливатель воздуха, имеющий инерциальный фильтр в тандемном роторе компрессора -  патент 2519009 (10.06.2014)
способ управления комбинированным устройством и комбинированное устройство, реализующее данный способ -  патент 2516091 (20.05.2014)
диффузор, имеющий лопатки с отверстиями, и газотурбинный двигатель, содержащий такой диффузор -  патент 2515575 (10.05.2014)
кожух компрессора с оптимизированными полостями -  патент 2514459 (27.04.2014)
воздушный коллектор в газотурбинном двигателе -  патент 2494287 (27.09.2013)
кожух для рабочего колеса турбомашины -  патент 2491447 (27.08.2013)
способ и устройство для регулирования компрессора для хладагента и их использование в способе охлаждения потока углеводородов -  патент 2490565 (20.08.2013)

Класс F02K3/075 управление соотношением расхода воздуха в контурах

клапан разгрузки в газотурбинном двигателе и газотурбинный двигатель -  патент 2472997 (20.01.2013)
устройство контуров отбора воздуха, ступень компрессора, содержащая такое устройство, компрессор, содержащий такую ступень, и турбореактивный двигатель, содержащий такой компрессор -  патент 2467209 (20.11.2012)
система разгрузки компрессора низкого давления газотурбинного двигателя -  патент 2435058 (27.11.2011)
узел вентилятора на лопасти, а также турбовентиляторный газотурбинный двигатель -  патент 2433290 (10.11.2011)
конструкция канала перепуска между внутренним и внешним контурами газотурбинного двигателя (варианты) и содержащие ее устройство для перепуска газа, газотурбинный и авиационный двигатели -  патент 2402688 (27.10.2010)
регулируемый смеситель для изменения степени двухконтурности турбореактивного двухконтурного двигателя -  патент 2249120 (27.03.2005)
двухконтурный газотурбинный двигатель со средствами отведения избыточного количества воздуха с упрощенным управлением -  патент 2222708 (27.01.2004)
способ обеспечения устойчивой работы вентилятора двухконтурного турбореактивного двигателя и смеситель для его осуществления -  патент 2144621 (20.01.2000)

Класс F02C9/18 путем отбора, перепуска или путем воздействия на изменяемые связи по рабочему телу между турбинами, компрессорами или их ступенями

воздушный коллектор в газотурбинном двигателе -  патент 2494287 (27.09.2013)
паровой котел-утилизатор с блоком дожигающих устройств -  патент 2486404 (27.06.2013)
устройство отбора воздуха в компрессоре газотурбинного двигателя -  патент 2486374 (27.06.2013)
инжектирование воздуха в тракт компрессора газотурбинного двигателя -  патент 2482339 (20.05.2013)
приводное устройство, его применение для открытия и закрытия створок в газотурбинном двигателе и турбореактивный двигатель -  патент 2472955 (20.01.2013)
кольцевой поточный канал для турбомашины с проходящим в осевом направлении основным потоком, а также компрессор, содержащий такой поточный канал -  патент 2397373 (20.08.2010)
газотурбинная установка -  патент 2358134 (10.06.2009)
способ управления газотурбинным двигателем -  патент 2351787 (10.04.2009)
способ устойчивого газоснабжения газораспределительной станцией с энергохолодильным комплексом, использующим для выработки электрической энергии и холода энергию избыточного давления природного газа и система для реализации способа -  патент 2346205 (10.02.2009)
газотурбинная установка -  патент 2326252 (10.06.2008)

Класс F01D17/10 конечные исполнительные механизмы

Наверх