противопригарная краска для литейных форм и стержней

Классы МПК:B22C3/00 Выбор составов для покрытия поверхности литейных форм, стержней или моделей
Автор(ы):, , , , , , , ,
Патентообладатель(и):Государственное научное учреждение Всероссийский научно-исследовательский технологический институт ремонта и эксплуатации машинно-тракторного парка Россельхозакадемии (ГНУ ГОСНИТИ Россельхозакадемии) (RU)
Приоритеты:
подача заявки:
2010-08-31
публикация патента:

Изобретение относится к литейному производству. Краска содержит в мас.%: электрокорунд 48-46, поливинилбутираль 1,3, наноструктурированный гидроксид алюминия 2-4 и растворитель. Введение наноструктурированного гидроксида алюминия уменьшает вязкость и повышает седиментационную устойчивость, кроющую и проникающую способности краски, повышает прочность покрытия на истираемость. 2 табл.

Формула изобретения

Противопригарная краска для литейных форм и стержней, содержащая электрокорунд, поливинилбутираль и растворитель, отличающаяся тем, что она дополнительно содержит наноструктурированный гидроксид алюминия при следующем соотношении компонентов, мас.%:

Электрокорунд48-46
Наноструктурированный противопригарная краска для литейных форм и стержней, патент № 2443502
Гидроксид алюминия2-4
Поливинилбутираль 1,3
РастворительОстальное

Описание изобретения к патенту

Изобретение относится к области металлургии, в частности к литейному производству деталей из железоуглеродистых сплавов, и может использоваться при разработке составов противопригарных красок для покрытий литейных форм и стержней. Для названных целей используют противопригарные покрытия российских и украинских фирм: «Политегмет», «Родонит», «Техномет», «Фосфогипс-Технология», «Формовочные материалы Украины», а также западных фирм «Furtenbach», «НА», «Foseco» (Германия).

Недостатком этих покрытий является их малая проникающая способность, что неизбежно приводит к дефектам на поверхности отливок. Кроме того, многие покрытия являются импортируемой продукцией, что в современных условиях приводит к постоянной угрозе сроков и объемов поставок и другим сопутствующим проблемам.

Противопригарные краски представляют собой смесь веществ, где твердое вещество (средне- и высокоогнеупорные минеральные частицы) распределено в жидком веществе во взвешенном состоянии [1].

Известны противопригарные покрытия, содержащие в качестве твердого вещества огнеупорные наполнители в виде дисперсных составляющих: талька, электрокорунда и других с использованием в качестве связующего поливинилбутираля [2, 3].

Недостатком этих покрытий является то, что они не обеспечивают получение чистой поверхности отливок, а имеющиеся на поверхности отливок дефекты («пригар», «ужимины», высокая шероховатость) снижают их качество, вызывают дополнительные затраты труда на очистку и осложняют последующую обработку. Эти операции приводят к неудовлетворительным санитарным условиям труда и низкой культуре производства.

Наиболее близким по достигаемому результату и технической сущности является противопригарная краска для литейных форм, содержащая в качестве твердой компоненты порошок электрокорунда до 64,1 мас.% [4]. Данная краска обладает рядом недостатков, связанных с достаточно большой величиной частиц порошка электрокорунда, а именно низкой седиментационной устойчивостью и неудовлетворительной проникающей способностью.

Целью изобретения является создание противопригарной краски для литейных форм и стержней с улучшенными свойствами: седиментационной устойчивостью, кроющей, проникающей способностями, позволяющими получать покрытия достаточной толщины и прочности.

Цель достигается тем, что в твердую дисперсную составляющую, содержащую алюмооксидный компонент, вводят наноструктурированный гидроксид алюминия (АlOOН). При этом его содержание находится в пределах 2-4 мас.%. Технический эффект достигается за счет проникания твердых частиц АlOOН в мелкие трещины, поры и др. дефекты рабочей поверхности литейной формы, при этом поверхность выравнивается и позволяет получить равномерное по толщине покрытие повышенной прочности.

Введение наноструктурированного порошка гидроксида алюминия менее 2 мас.% не позволяет достичь равномерного покрытия, т.к. не закрыты полностью поры, микротрещины рабочей поверхности литьевых форм, а превышение порошка гидроксида выше 4 мас.% приводит к увеличению вязкости покрытия и ухудшению кроющей способности.

Технология получения краски состояла в смешивании порошка электрокорунда (ГОСТ 28818-90 «Материалы шлифовальные из электрокорунда», фракция 50 мкм) с наноструктурированным порошком гидроксида алюминия (ТУ 2133-001-76634032-2006 «Алюминия оксигидроокись (бемит)», размер кристаллитов составлял не более 100 нм). Наноструктурированность гидроксида алюминия определяется технологией его получения, в частности гидротермальным синтезом [5]. Используя гидротермальный синтез, описанный в [5], можно, варьируя параметры процесса, получать наноструктурированный гидроксид алюминия с размерами наночастиц от десятков до сотен нанометров.

Поливинилбутираль (ГОСТ 9439-85 «Поливинилбутираль», продукт взаимодействия поливинилового спирта и масляного альдегида) размешивают в органическом растворителе. Полученную смесь добавляют в композицию электрокорунд - гидроксид алюминия и все вместе смешивают в краскомешалке. Приготовленной краской с помощью кисти окрашивали рабочую поверхность литьевой формы. После сборки формы в нее заливались железоуглеродистые сплавы марки СЧ 20, Р6М5.

Заявитель провел исследование характеристик: вязкость, седиментационная устойчивость и прочность на истирание предлагаемой противопригарной краски и противопригарной краски по патенту RU 2048952(прототип).

Контроль вязкости (условная вязкость) осуществляли путем определения продолжительности истечения определенного объема жидкости через калиброванное отверстие. Для этого использовали вискозиметр В3-4 (ГОСТ 9070-75). Данный способ дает возможность провести сравнение вязкости предлагаемой противопригарной краски и противопригарной краски по патенту RU 2048952.

Определение седиментационной устойчивости производили по ГОСТ 10772-78. Цилиндр заполняли контролируемой жидкостью и через определенное время измеряли высоту верхнего осветленного слоя, после чего рассчитывали седиментационную устойчивость в %:

противопригарная краска для литейных форм и стержней, патент № 2443502

где: V1 и V2 - соответственно общий объем столба жидкости в цилиндре и объем верхнего осветленного слоя; (V1=100 мл).

Прочность покрытий, полученных нанесением краски, оценивали по прочности на истирание в соответствии с ГОСТ 10772-78. На стеклянную пластину с нанесенным покрытием насыпали песок с расстояния 70 мм до тех пор, пока на месте удара песка краска не сотрется до стекла.

Составы красок, подготовленных в соответствии с заявочными материалами на патент и прототипом, приведены в таблице 1.

Таблица 1
Состав антипригарных красок
Номер краски Состав краски
НГАЭлектрокорунд Поливинилбутираль Растворитель
1 1,548,5 1,3остальное
2 248 1,3остальное
3 347 1,3остальное
4 446 1,3остальное
5 4,545,5 1,3остальное
Прототип - 63,1-64,11,4-1,2 31,5-34,5

НГА - наноструктурированный гидроксид алюминия.

Результаты исследований приведены в таблице 2.

Таблица 2
Свойства антипригарных красок и покрытия
Контролируемые свойства Номер краски
12 34 5прототип
Условная вязкость, С 1516 1920 2228
Седиментационная устойчивость, % 1 час95,2 95,896,6 100,0100,0 94,6
3 часа90,04 91,4 95,398,2 98,288,6
24 часа 89,890,2 94,897,9 97,075,3
Прочность на истирание, кг/мм 8,79,6 10,211,6 11,05,2

Добавка наноструктурированного порошка гидроксида алюминия увеличивает проникающие свойства противопригарной краски, повышает кроющую способность и прочность покрытия, значительно улучшая качество поверхности отливок. Снижается содержание синтезируемого корунда. Кроме этого заявляемая краска является импортозамещающей продукцией.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Жуковский С.С. «Формовочные материалы и технологии литейной формы». Справочник. М.: Машиностроение, 1993 г.

2. SU 1289582, МПК В22С 3/00, опубл. 15.02.87, бюл. № 6.

3. SU 1202686, МПК В22С 3/00, опубл. 07.01.86, бюл. № 1.

4. RU 2048952, МПК В22С 3/00. Республиканский инженерно-технический центр по восстановлению и упрочнению деталей машин и механизмов СО РАН, опубл. 27.11.95 г. [прототип].

5. Ю.А.Мазалов, А.В.Федотов, Е.В.Щеглов, А.В.Берш, Л.В.Судник, «Гидротермальный синтез нанокристаллического гидроксида алюминия и технологии его применения», М.: Техника в сельском хозяйстве, 2009, № 2, стр.3-5.

Класс B22C3/00 Выбор составов для покрытия поверхности литейных форм, стержней или моделей

термостойкий керамический композит -  патент 2521540 (27.06.2014)
жидкая огнеупорная композиция -  патент 2515144 (10.05.2014)
композиция покрытия для литейных форм и стержней, предупреждающая образование дефектов от реакционных газов -  патент 2493933 (27.09.2013)
защитно-упрочняющее покрытие огнеупорных футеровок тепловых агрегатов -  патент 2492019 (10.09.2013)
способ получения антиадгезионных покрытий -  патент 2490292 (20.08.2013)
противопригарная термостойкая краска для песчаных и металлических форм (варианты) -  патент 2489225 (10.08.2013)
способ формирования структуры многокомпонентных бронз -  патент 2481922 (20.05.2013)
противопригарная термостойкая краска для песчаных и металлических форм (варианты) -  патент 2478019 (27.03.2013)
способ получения скруглений на отливках из алюминиевого сплава -  патент 2470733 (27.12.2012)
наноструктурированное покрытие для поверхностного модифицирования чугунных отливок -  патент 2461438 (20.09.2012)
Наверх