модифицированный аминный отвердитель эпоксидных смол
Классы МПК: | C08G59/50 амины |
Автор(ы): | Индейкин Евгений Агубекирович (RU), Курбатов Владимир Геннадьевич (RU), Ильин Александр Алексеевич (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет" (RU) |
Приоритеты: |
подача заявки:
2010-12-13 публикация патента:
27.02.2012 |
Изобретение относится к технологии получения отвердителей для эпоксидных смол. Предложен аминный отвердитель эпоксидных смол, представляющий собой раствор полианилина в форме эмеральдинового основания в 2-метилпентаметилен-1,5-диамине. Содержание полианилина от 0,5 до 10%. Технический результат: повышение противокоррозионных свойств покрытий, сформированных с использованием предложенного отвердителя. 1 табл., 3 пр.
Формула изобретения
Аминный отвердитель эпоксидных смол, отличающийся тем, что он представляет собой раствор полианилина в форме эмеральдинового основания в 2-метилпентаметилен-1,5-диамине, причем содержание полианилина составляет от 0,5 до 10 мас.% от количества 2-метилпентаметилен-1,5-диамина.
Описание изобретения к патенту
Изобретение относится к технологии получения отвердителей, используемых, например, в лакокрасочной промышленности.
Известен аминный отвердитель эпоксидных смол N-оксиэтилдиэтилентриамин (Mod. Plast, 1957 (август), 125, 126, 128, 202), обладающий высокой реакционноспособностью.
Известен аминный отвердитель эпоксидных смол диаминодициклогексилметан (Герм. Заявка В 32594 (14.9.54) (DAS 1006991), BASF), обладающий низкой летучестью и оказывающий отверждающее действие на холоду.
Известен аминный отвердитель эпоксидных смол n,n'-диаминодифенилметан (Бельг. Пат. 537059 (2.4.55; US-Pri. 9.4.54, сер. 422257, Bakelite) для получения термостойких покрытий.
Известен аминный отвердитель эпоксидных смол Mg-м-фенилендиамин (Герм. Заявка С 9373 (15.5.54), CWA) для получения покрытий, устойчивых к действию щелочей.
Однако эпоксидные покрытия, сформированные при их участии, имеют ток коррозии более 1 мкА и электрохимический импеданс ниже 150 кОм.
Известен аминный отвердитель эпоксидных смол 1,6-гексаметилендиамин (Influence of Hardeners on Anticorrosive Properties of Epoxy Coatings. Larissa A.Sakharova, Eugene A.Indeikin, Vladimir B.Manerov, Olga A.Kulikova. Materials and Manufacturing Processes, 2005, v.20, № 1, p.57-63).
Наиболее близким к предлагаемому является аминный отвердитель эпоксидных смол 2-метилпентаметилен-1,5-диамин (З.А.Кочнова, Е.С.Жаворонок, А.Е.Чалых. Эпоксидные смолы и отвердители: промышленные продукты. - М.: Пэйнт-Медиа, 2006. 200 с).
Использование данных отвердителей в противокоррозионных покрытиях требует дополнительного введения в композицию противокоррозионных пигментов.
Технической задачей изобретения является повышение противокоррозионных свойств покрытия, сформированного с использованием модифицированного аминного отвердителя (МАО), в результате чего может быть значительно уменьшена или полностью исключена пигментная часть отверждаемой композиции, содержащая токсичные и экологически опасные пигменты.
Задача достигается введением в состав известного аминного отвердителя 2-метилпентаметилен-1,5-диамина полианилина в форме эмеральдинового основания в количестве от 0,5 до 10%.
Пример 1
0,1 г полианилина в форме эмеральдинового основания вводили в 20 г 2-метилпентаметилен-1,5-диамина. Смесь перемешивали в течение 7 суток с использованием магнитной мешалки. В результате был получен раствор темно-синего цвета.
МАО вводился в эпоксидную смолу ЭД-20 в соотношении по массе ЭД-20/МАО, равном 200/30. Композиции наносились на стальные пластины аппликатором с зазором 100 мкм. Отверждение покрытий проводили при 60°С в течение 6 часов.
Пример 2
Аналогично примеру 1, но берутся соответственно 1,0 г и 20 г полианилина в форме эмеральдинового основания и 2-метилпентаметилен-1,5-диамина.
Пример 3
Аналогично примеру 1, но берутся соответственно 2,0 г и 20 г полианилина в форме эмеральдинового основания и 2-метилпентаметилен-1,5-диамина.
1. Оценка противокоррозионных свойств эпоксидных покрытий, полученных с применением МАО, проводилась потенциостатическим способом и методом спектроскопии электрохимического импеданса. В качестве коррозионноактивной среды применяли 3%-ный водный раствор хлорида натрия. Расчет токов коррозии проводили по методике (Горловский И.А., Индейкин Е.А., Толмачев И.А. Лабораторный практикум по пигментам и пигментированным лакокрасочным материалам. - Л.: Химия, 1990). Расчет импеданса при частоте 80 Гц проводили по методике (Карякина М.И. Испытания лакокрасочных материалов и покрытий. - М.: Химия, 1988). Показания приведены в таблице.
2. В процессе воздействия коррозионной среды под покрытием на поверхности металла образуется защитная пленка, вызывающая пассивирование поверхности и оказывающая дополнительное защитное действие.
Таким образом, все полученные полимерные покрытия с использованием МАО обладают свойством снижать ток коррозии.
Противокоррозионные свойства эпоксидных покрытий | ||||||
Образец | Показатель | Время экспозиции, сут | ||||
0 | 1 | 3 | 8 | 15 | ||
Контрольный образец с немодифицированным отвердителем | Ток коррозии, мкА | 0,87 | 0,79 | 1 | 1,62 | 1,86 |
Импеданс, кОм | 154 | 51,2 | 3,0 | 2,6 | 2,3 | |
Пример 1 | Ток коррозии, мкА | 0,71 | 0,69 | 0,83 | 0,76 | 0,93 |
Импеданс, кОм | 180400 | 180100 | 186200 | 62200 | 47100 | |
Пример 2 | Ток коррозии, мкА | 0,63 | 0,71 | 0,69 | 0,44 | 0,81 |
Импеданс, кОм | 180300 | 180000 | 185600 | 93400 | 93900 | |
Пример 3 | Ток коррозии, мкА | 0,66 | 0,68 | 0,71 | 0,59 | 0,95 |
Импеданс, кОм | 180100 | 179700 | 185300 | 93400 | 93500 | |
*Импеданс при частоте 80 Гц |